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Abstract

In the domain of image based localization, alternatives to image feature based algorithms
have been developed making use of similarity metrics that operate directly on pixel
intensity values. These approaches can work robustly and efficiently in cases when the
recognition process needs to deal for example with varying lighting conditions or changes
in scenery detail. In addition to employing such a pixel based similarity metric a recent
algorithm called OpenSeqgSLAM processes image sequences instead of single images to
improve the recognition. However OpenSeqSLAM is not robust in cases of perspective
change. This makes it problematic to use in many robotic applications when the camera
perspective is not fixed to certain positions with fixed orientations. In this contribution
an approach is developed and evaluated that aims to mitigate the effect of perspective
change on recognition performance by combining the concept of OpenSeqSLAM with
an alternative similarity metric called tangent distance. It was further analyzed if the
algorithm can be suitably designed to run on a humanoid robotic platform and how
it can utilize the robots capabilities. To enable evaluation a test application called
Dream Viewer for image sequence based localization algorithms has been developed. In
result of the first tests an adapted and heuristic version of the algorithm was developed
and evaluated as well. This algorithm aims to run on hardware performance constraint
robotic embedded systems. Developed algorithms were tested offline with recorded image
data as well as online on a humanoid robot platform called Myon. Results indicated
that the developed algorithms using tangent distance can perform superior in terms
of recognition performance compared to the standard OpenSeqSLAM algorithm in the
tested cases of perspective change.



1. Introduction

It is fair to assume that one of the first and most pressing questions that will come
to mind of a person regaining consciousness in a different place than the person last
remembers to be in will be: Where am I? Furthermore this person will probably start
looking around in the hope of recognizing some parts of the place he is in. Evidently it
is very important to us to get an idea of where we are, using this information as a basis
for planning our next steps or getting memories into context. The above mentioned
question and associated behaviour are central aspects of this thesis, its main focus is
to explore and implement an image sequence based place recognition approach utilizing
a humanoid robot. The used robotic platform is the modular Myon humanoid robot,
developed in the Neurorobotics Research Laboratory (NRL), but the general approach
can be applied to other platforms as well and is not tailored to the specific hardware.

In image based recognition and localization many implementations rely on using so
called feature based techniques. In general these approaches first detect features in an
image, like for example an intersection area of two edges. Afterwards these image areas
are numerically transformed into the final feature descriptors, that are stored. These
descriptors are designed to be robust against possible image transformations, so that
for example the same image scene can be recognized despite a change in perspective or
contrast. These approaches have proven to work well in a number of use cases, especially
when detailed high resolution input images are used, that are nowadays easily obtainable
using low-cost hardware. However some drawbacks, still exist:

e detector needs to be tuned to image scene characteristics (e.g. indoor vs. outdoor)
e possible failure due to change in lighting (e.g. day and night)

e might not tolerate changed details in scene (e.g. removed objects)

It is therefore not just an academic exercise to evaluate other non feature based local-
ization methods. Such approaches will be evaluated in this thesis. Instead on extracting
features the main underlying idea is to determine similarity of images based on a pixel
based difference. This concept will be briefly introduced in the following part.

1.1. Motivation

In this contribution a localization algorithm is developed operating on the basis of image
sequences and aimed to run on a humanoid robotic system. As mentioned above this
thesis is focused on algorithms that directly operate on pixel based intensity values of
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images without any further extraction of features. The concept of such image sequence
based localization algorithms alone are not a novelty and related research will be pre-
sented in the following section. However, these kind of state-of-the-art algorithms often
fail to recognize places when the input images, that should be recognized as a known lo-
cation, show the place from a different perspective than in the original image that should
be recognized. As later explained this problem even occurs when the perspective change
is small. The key reason for that is that one component of these algorithms, the image
similarity metric, is not well adjusted to compensate perspective changes. In other words
such similarity metrics are not perspective change invariant. Since this contribution is
aimed to enable a robotic system to recognize a location by using image sequence based
localization it would be necessary to make the approach more perspective change invari-
ant. For example it should still be possible for the robot to recognize a room when the
robot’s input camera images are tilted by nine degrees compared to the images stored in
memory. A similarity metric that aims to achieve such properties is the tangent distance
and for this contribution it was attempted to combine it with a present image sequence
based localization algorithm. Further it was necessary to evaluate the algorithms re-
garding their expected performance when running online on a robotic system and also
considering constraints regarding reactiveness and hardware resources.

In addition, the present algorithms do not make any use of abilities that humanoid
robotic systems potentially offer. For example active movements of the robot can be used
to achieve a different perspective and thereby improving the recognition performance.
That aspect will be considered as well in this contribution.



2. Related Work

Even when leaving aside place recognition approaches that rely on non image based vi-
sual data like laser scanner readings, still plenty of research has accumulated in recent
years. Therefore in this section only a selection of topics that appear to be the most
closely related to the subject of image sequence based localization is brought into con-
text. Image sequence based localization can be categorized as a subproblem of visual
localization. Visual localization approaches use two dimensional image data as input or
sometimes three dimensional shape data. It is possible to divide this category further
into feature based and non feature based approaches. Feature based approaches make
use of the input images by applying image feature extractor and descriptor techniques
like SIFT and SURF on them. A recent example for this is given by the approach of
Andreasson et al. in [ADLO0S]. It will be explained in greater detail later, but in order
to recognize a locally obtained image in a set of stored images an algorithm needs to
determine how similar two images are. This is referred to as similarity metric and the dis-
criminating aspect of the vision based localization algorithms. Andreasson et al. present
a Simultaneous Localization And Mapping (SLAM) algorithm that determines the sim-
ilarity between input images and stored images by making use of SIFT. More closely
related to the approach presented in this thesis however are localization approaches that
work directly on the image pixel values. They are also sometimes referred to as holistic
approaches. A biologically inspired approach is OpenRatSLAM presented by Milford et
al. in [MJCWI13] and [MW10]. This approach is modeled around neurological struc-
tures in the mammalian brain called grid cells. These cells play an important role in
the spatial orientation for example of the rat. OpenRatSLAM uses an image similarity
metric called Sum of Absolute Differences (SAD) and this similarity metric is closely
related to the metric used in the OpenSeqSLAM algorithm presented by Milford et al.
in [MW12]. OpenSeqSLAM provides a basis for the algorithms developed in this contri-
bution. It makes use of image sequences to recognize a location. Milford et al. further
investigate OpenSeqSLAM’s localization performance for various types of downsampled
input images in order to evaluate how much visual data is actually required to perform
reliable localization. They present their results in [Mil13] and experiment for example
with different image resolutions and intensity ranges. Major features of these tests are
reflected in the experiments performed in this contribution. The similarity metric used
and evaluated for the developed place recognition algorithms is the tangent distance.
This metric was developed by Simard et al. and they evaluated it in the context of nu-
meric digit classification tasks in [SLCDVO00]. The tangent distance is a similarity metric
that aims to be transformation invariant for a set of given transformations. Other met-
rics with a similar aim were developed. For example the Min-warping method designed
to provide illumination robustness. It is developed and evaluated by Modller et al. in



[MHET4]. Another example is the Image Fuclidean Distance (IMED), which enhances
the euclidean distance to make it more robust against pixel pertubations. This method
was developed by Wang et al. in [WZF05]. They also compare this metric to the tangent
distance and find the latter to be superior in terms of recognition performance, but see
the challenge to integrate it efficiently into image recognition algorithms.



3. Approach

In this chapter the basic contributions and the general theory of the employed approaches
are presented. First in section [3.1] aspects specifically addressed by this thesis are sum-
marized. References to the general structure of this thesis are presented there also. In
section [3.2)theoretical concepts, that are key to the contributed algorithms are presented.

3.1. Contribution

In this section main contributions that this thesis aims to achieve are presented. They
can be structured in different parts and listed sequentially according to the order they
were approached. This is done in the following enumeration and although most listed
topics will be presented in later following chapters they are listed here to give a complete
overview. Each of them will be shortly addressed in this section.

1. Image Sequence Localization Algorithms
e Tangent Distance

e Mean Absolute Difference
2. Data Collection (online and offline)

3. First Tests and Implementation Verification
e Testing Application Development Dream Viewer

e Algorithm Verification with Online Data
4. First Experiments and Evaluation
5. Development and Implementation of adapted Online Algorithm
Online Algorithm Experimental Verification on Myon

Final Experiments and Evaluation of all Algorithms

S B

Assessment of Future Modifications

For the reasons presented in the motivation section one of the main goals is to combine
the tangent distance similarity metric with an image sequence based localization algo-
rithm. The first step is therefore to implement the localization algorithms along with the
tangent distance and mean absolute difference similarity metrics. Main aspects of that
are presented in chapter [3] Once that is achieved first tests can be performed with the
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similarity metrics and the localization algorithms. In order to do that first test data is
needed, so the second step is to collect data. This can be done using directly the target
robotic system to record image sequences. To obtain larger image sets existing offline
datasets were gathered in addition. The third step is then to test and verify the imple-
mented algorithms. For that purpose it is desirable to be able to select input data in a
comprehensible and flexible way for the localization algorithms and also to simply view
input image sequences. Therefore an application called Dream Viewer was developed to
enable that. The word Dream was used because recorded and saved image sequences
are similar to the experience of human dreaming, that can be in general described as
a series of images as well. This is described in chapter Following that, the fourth
contribution is the setting up and performing of experiments that allow evaluation and
first comparisons between the algorithms. On the basis of these first results it became
obvious that the development of an algorithm more suitable for the target platform was
necessary. This is listed as the fifth aspect and described in chapter [5l The sixth part
summarizes the validation and first test of this algorithm that was implemented on the
target robotic platform. Following that experiments similar to those of the fourth listed
aspect were performed. All developed algorithms are compared there.

In context of the last listed aspect future modifications and assumptions about the
online algorithm are assessed. Important theoretical concepts that are the basis and
therefore preconditions for the developed contributions are described in the following
section.

3.2. Underlying Theory

In this section theoretic concepts that are fundamental to the developed localization al-
gorithms are summarized. Starting with descriptions of related image similarity metrics
the section is concluded with the presentation of the later modified localization algorithm
OpenSeqSLAM. In the following descriptions the term localization is used. It means that
a location, for example defined by x-y coordinates on a map, is obtained. Synonymous
to the term location is the position. In the context of this contribution localization is
performed by recognizing a place by using input image sequences and comparing those
to stored images. Each stored image is associated with a position, so localization is
possible in combination with correct recognition. In addition to that, images that are
recorded at a certain location can be associated with the orientation of the camera at
the moment the image is shot. This is referred to as a pose, consisting of position and
camera orientation and makes is possible to distinguish different perspectives obtained
at the same location.

3.2.1. Mean Absolute Difference

The Mean Absolute Difference (MAD) is a metric indicating similarity of two same sized
grayscale images A and B. This metric is detailed here because it plays a major role
in the OpenSeqSLAM localization algorithm described in section [3.2.3] This metric
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operates in the spatial image domain, meaning it is working directly on pixel intensity
values. It simply sums up the absolute differences for corresponding pixels in images A
and B and divides it by the total number of pixels. This is defined as:

Yy oz
MAD = iZZ‘Arc_Brc‘ (31)
Yy r=1 c=1

Where in equation [3.1] # is the number of pixels in horizontal direction and y is the
number of pixels in vertical direction for both same sized images A and B. The notation
A, represents for the grayscale image A the intensity of the pixel in row r and column c.
The question might be asked why the MAD metric has been chosen for OpenSeqSLAM
instead of other simple intensity based metric like the similar Mean Squared Difference

(MSD) metric defined as:

Yy oz
MSD = - Z Z(ATC — B,.)? (3.2)
Yy r=1 c=1
It can easily be observed that the MAD metric does not promote outliers, meaning
larger differences in intensity values between A and B as much as the MSD metric
does because of the square. Especially in the image based localization use cases this
is of advantage because often two compared images depict the same location but in a
slightly altered way. Alteration can be caused for example by a combination of change
in perspective, changed light, change of objects in the scene, noise and other things.
In any case the difference metric should be able to tolerate a certain amount of these
alterations or at least not exaggerate them like the MSD might do, as is argued by Brock
et al. in [Brol3l Chapter 16].
As mentioned before the MAD however also does not tolerate a wide range of image
transformations. The problem can be easily illustrated which is done in in figure [3.1
There, two similar images are shown and the only difference between them is a vertical
translation by one pixel. Notwithstanding that seemingly small difference a pixel based
image difference like the MAD, or even worse the MSD, would be large because the
dark pixels of the left and the right image are subtracted with largely unequal intensity
values represented by white pixels. If there would be a way to transform at least one
of the images before the pixel difference is calculated the result would be more close to
the expected value that indicates great similarity. This problem has been addressed in
OpenSeqSLAM in a limited manner by modifying the MAD to tolerate a certain degree
of translation in horizontal direction. This is described by Milford et al. in [Mill3] by
defining the MAD as follows:

MAD = inin g(Az, A, B) (3.3)
xET
1 G
g(Az, A, B) = - > 1Averas) — Brel (3.4)
r=1 c=1
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N

Figure 3.1.: A simple corresponding pixel based image difference between the left image
and a vertically translated version of itself, represented by the right image,
would result in a large pixel based difference because all non white pixels
in the left and right image are compared to a white pixel instead of a dark
one.

In equation [3.3] the MAD is calculated for different offsets in horizontal direction and
then the minimum is selected as a result. The range of offsets that is considered can be
controlled by the parameter o. The intent for this definition is described in [Mill3] as
a way to increase OpenSeqSLAM’s performance regarding camera yaw movements and
horizontal offsets.

3.2.2. Tangent Distance

It is shown in section the MAD pixel difference based similarity metric is not
invariant to most image transformations that are related to perspective changes like
rotation or scaling. As described in section this thesis will evaluate a different image
similarity metric, the tangent distance. This metric is defined so that its results are more
invariant in the presence of some anticipated image transformations. In the following it
will be described how this metric is defined and how it performs compared to the MAD
and other distance metrics.

The concept of tangent distance was first introduced by Simard et al. in [SLCDV00]
in the context of pattern recognition. The application context that the authors evalu-
ate in this paper is the problem of handwritten digit recognition. This means that a
classification algorithm has to decide for an input image which number out of the 10
possible is depicted in it. Since the input images are handwritten digits the vast ma-
jority of them was subject to a range of transformations. In result these images differ
significantly on a pixel basis from a single representative of each digit class. Transforma-
tions that frequently happen in this context are for example small rotations, variations
in stroke thickness, scaling and translations. Pixel based similarity metrics like the
MAD, described in section [3.2.1] or the similar euclidean distance are not invariant to
these transformations. In the context of pattern recognition this often leads to wrong
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classifications. The authors describe that by using the tangent distance in the case of
handwritten digit recognition they outperform most other approaches that are used in
this context. Since the tangent distance performs well in the case of transformation
invariant digit recognition it is worth evaluating if it can be used for transformation
invariant place recognition or localization, a key question of this thesis.

If given an image A of a location, we can define a set of transformations that when
applied to A can be interpreted as a change in perspective. An example of one possible
transformation is the rotation operation. This transformation occurs for example when
the vision system of a robot is tilted. A rotation operation can be described by a single
parameter, the rotation angle . Further we can describe the set Sy, containing all
rotated versions of the image A as:

Srot = {x|Ja : x = rotation(A, «)} (3.5)

Where rotation(A, «) is A rotated by angle o and A = rotation(A,0). Each element
of S,ot can be understood as a vector with a dimension equal to the number of pixels in

A.

dlm(A) = Awidth X Aheight = Apimels (36)

If we assume for example A to be 25 pixels in width and 20 pixel in height then A
and each transformed image in S,.; can be interpreted as a vector of dimension 500.

The set S, is a manifold in this 500 dimensional image space and since it depends
only on the single parameter « it has dimension 1. Of course definitions analogous to
the definition of S, can be made for other image transformations as well including non
linear transformations like image translations. In reality we can expect a combination
of transformations to happen. For example transformations that can be considered
closely resembling a change of perspective are rotation by angle «, vertical translation
in number of pixels ai, horizontal translation in number of pixels a3 and image scaling
by factor ay. Now again we can define a set S4 that includes all images around A that
are transformed by these four transformations:

Sa={z|3a;: x =t(A,dq;) (

a;=lar az a3z oy (

7)
8)

The four transformation parameters are now grouped into the vector a; and t(A, a;)
performs the mentioned image transformations on A according to the entries in ;. The
manifold resulting from this has dimension 4. If we consider a second image B and
wish to determine how similar it is to A when only the mentioned four transformations
can be applied to both of the images. What needs to be done to get an exact solution
is to find the minimum distance between the manifolds S4 and Sg. Where Sp is the
manifold containing all transformed versions of B analog to the definition of S 4. However

3.
3.

10



3.2. Underlying Theory

since non linear image transformations are involved and therefore S4 and Sp are not
linear subspaces of the high-dimensional image space it is complicated to analytically
determine this distance. The general idea of the tangent distance is therefore to find the
tangential planes that approximate the manifolds around A and B and then to determine
the minimal distance between these linear subspaces. The concept is also visualized in
figure There the two manifolds S4 coloured in red and Sp coloured in green stretch
around the two images A and B. Although it is difficult to convey the fact in a figure,
it should be noted again that all the elements in S4 and Sp are of high dimension
and therefore the shape of S4 and Sp can be highly complex. Also in the figure there
are three different distances highlighted. One of them is the tangent distance, marked
by a solid line that connects the two lines tangential to the points A and B. These
lines represent the linear approximations of the manifolds around the original images A
and B and the tangent distance is the shortest distance between these approximations.
In the following descriptions this linear approximation is referred to as tangent plane.
Marked by a dotted line that directly connects A and B is the euclidean distance of
the untransformed images. Since A and B are in the tangent plane it can be seen that
the euclidean distance can not be smaller than the tangent distance. In the upper right
corner, marked by a dashed line is the actual distance between S4 and Sp.

Figure 3.2.: Visualization of transformation manifolds S4 and Sp around two images A,
B and distances. The euclidean distance between A and B is marked by
a dotted line directly connecting the images. The solid line connecting the
tangent planes is the tangent distance and represents the shortest distance
between the tangent planes around A and B. The shortest distance between
S and Sp is represented by a dashed line.

To obtain the tangent distance the following steps can now be summarized:

11
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1. linearize and obtain tangent planes
2. find approximations on tangent planes that minimize distance

3. get euclidean distance between minimizing approximations

In equation the manifolds are defined by the function ¢(A, a;). To get the tangent
plane this function is linearized by performing a first order Taylor expansion centered at
the input image A, that is t(A,0). This linearization is expressed as:

H(A, &) = t(A,0) + m(;a’“) YHOT. ~ A+ Td (3.9)
Dt(A, @)
T=—"2= 1
oa la=o0 (3.10)

It is known that the full Taylor expansion involves an infinite summation of terms
where each term includes a higher order derivative of the approximated function. Since
in case of the tangent distance the aim is to gain only a linear approximation that is the
tangential subspace, the higher order terms (H.O.T.) are omitted which leaves A + Td.
The matrix T' contains now the tangent vectors, a basis of the linear subspace, which
is the tangent plane. Tangent vectors are the first order partial derivatives of ¢(A, a)
evaluated at @ = 0. Since in this thesis we considered four different transformations, T’
is defined as:

Ot(A, d)
T=-""2" A1
da  la=o0 (3.11)
_ [0t(A,@) Ot(A,a) OL(A,a@) OL(A,q) (3.12)
- 8@1 ’ 8@2 ’ aag ’ 8a4 G=0 '

Each element in T is a tangent vector and it will be now shown how the tangent
vectors are obtained. To give a demonstrative example a sample image is used from
which some tangent vectors are derived. This is illustrated in figure Considering
there first just the left column of images, the top image depicts the original input image, a
grayscale version of the flag of Sweden. From this input image the two tangent vectors for
horizontal and vertical translation are obtained. The partial derivative of the horizontal
translation operation of the image can be understood as an image in that each pixel value
represents the value of pixel intensity change in a horizontal direction of the original
image at this pixel position. This is shown in the middle row image and it can be
seen there that change in intensity occurs for the flag of Sweden only at the borders
of the vertical stripe. Similar the vertical translation operation is gained and the only
difference is that vertical contrasts are considered as can be seen in the bottom image.
Naturally t(A,d) has to be derivable at least once but digital images are technically
not continuous because of the discrete intensities. As can be seen also in the example
flag of Sweden tangent vector images that this can be problematic, because the contrast

12



3.2. Underlying Theory

changes at the borders of the stripes are very narrow and the resulting tangent vectors
operational range is very narrow itself and not continuous. The tangent vectors are used,
as described hereafter, in a weighted summation to form the linear approximation of a
transformed image. In this regard it should be noted that only those tangent vector
image parts can have an effect on the weighted summation that are non zero. In the
example tangent vector images therefore the only range of translation transformations
that can be approximated is within the range of the narrow bright lines visible at the
borders of the stripes and the rest is zero. Because of these problems Simard et al.
present the tangent vector creation in combination with a Gaussian blur operation on
the image. Results of the input image convolved with a Gaussian blur kernel are shown
in the right column of images in the example figure. The resulting tangent vectors,
shown below the blurred input image, are in result wider in range of operation and
intensity change between contrasting intensity regions is mitigated. Ways to obtain the
horizontal and vertical image derivatives as well as the Gaussian blur are well known and
are in detail described for example by Gonzalez and Woods in [GW10, Chapter 3|. As
the authors also point out blurring reduces the original structural image details but can
also be beneficial when noise is present so it should be always considered how much the
images should be blurred. In the example two tangent vectors types have been presented.
For other transformations like image scaling and rotation it is described by Simard et
al. in [SLCDV00] how they are created. All of them are formed by a combination of the
horizontal and vertical image derivatives.

The tangent vectors are also called lie operators so each entry in T containing a single
tangent vector is labeled L; and filled into a matrix L, so that in column ¢ of L the lie
operator L; is found. In case of image A the resulting matrix is labeled L4 and each
column is formed by one tangent vector. This is shown in equation [3.13

L = [L1|La|Ls|L4) (3.13)

In this thesis four types of image transformations are considered, the linear rotation
and scaling transformation in combination with the non linear translation transforma-
tions in vertical and horizontal direction. Without restricting general validity we can
say that Lq shall be the lie operator of the translation operation in horizontal direction,
Lo the lie operator of translation in vertical direction, L3 the lie operator of rotation
transformation and L4 the lie operator of the scaling transformation.

Each element of the tangential plane can be expressed as a linear combination of the
lie operators. This linear combination is solely defined by the scalar values in @ so that
the equation of the tangential plane becomes:

AN@) = A+ Laa (3.14)
=A+a1Ly1 +aolo 4+ aslsg + asly (3.15)

From equation it can be seen how the linearization of the four transformation
operations works. In case for example we imagine an image B that is a highly rotated and

13



3. Approach

Figure 3.3.: A grayscale image of the Flag of Sweden and its horizontal and vertical
derivatives original (top left) and after applied Gaussian blurring (top right).
Below these are the corresponding tangent vectors for horizontal (middle
row) and vertical translation (bottom row).

horizontally translated version of the original image A. Then the linear approximations of
B would reflect these transformations by larger values a3 and a4 in the linear combination
since these factors influence the rotation and translation lie operators.

Given the formal definition of the tangent planes it is now possible to define the
tangent distance between two images A and B. Let us assume the tangent planes of
images A and B, following the definition of equation are A'(@) and B'(b). The

14
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tangent distance T'D can now be defined by the minimizing expression:

TD(A, B) = min ||A'(d@) — B'(0)||2 (3.16)

a,b

So in both tangent planes approximations with the smallest euclidean distance needs
to be found. In [SLCDV00| Simard et al. achieve this by defining the normed expression
as a function d that depends on the two parameters @ and b. The idea is then to setup
an equation where the partial derivatives of this function d are set equal to zero because
this is the condition for which a minimum is expected. More details on the derivation
are given in the named paper but in result the solution to the minimization problem is
given as:

= (Laa— LapLppLpa) ' (LapLypLh — Ly)(A - B) (3.17)

a
b= (LpaLl 4Lag — Lpg) N(LpaL L — LE)(A - B) (3.18)
With Laa = L4 La, Lpa = LEL4, Lyp = L4 Lp and Lgp = LELp.
This is the form that has also been used for the implementation of the tangent distance
in the developed localization algorithms that will be described in the following sections.

3.2.3. OpenSeqSLAM

In this section the image sequence based simultaneous localization and mapping (SLAM)
algorithm OpenSeqSLAM will be analyzed. This algorithm provides the general concept
for the algorithms created in this thesis. OpenSeqSLAM was introduced by Milford and
Wyeth in [MW12] and is described also in [Mill3].

As mentioned above OpenSeqSLAM uses image sequences to attempt a localization.
The images the algorithm operates on are grayscale images. This means that for each
pixel in the used images exactly one intensity value is available. In the context of the
algorithm two types of image sequences are distinguished, these are:

e database sequence

e localization sequence

In the database sequence all images are stored that will be compared to the locally
acquired input images. So in the robotic context the database sequence can be un-
derstood as the visual memory of the robot. A localization sequence is a sequence of
locally acquired images and that is the input for the localization algorithm. In the
case of OpenSeqSLAM for this input there is then a sub-sequence of equal length in
the database to be found that is the most similar to all regarded subsequences in the
database sequence. Later in this section it is explained what kind of metric is used in
the context of OpenSeqSLAM to determine the similarity.

15
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An important attribute of both the database sequence and also the localization se-
quence is that each element of them is semantically linked to its surrounding elements.
To show what that exactly means the two sequences will be defined more formally. Lets
assume the database to be labeled M with elements m; and the localization sequence
labeled L containing elements [; where i and j mark the position of these elements in
each sequence. Then a total order < for both sets can be defined using a was memorised
before relation. So that m < m’ for m,m’ € M if and only if m was memorised before
m’. An equal definition can be given for elements of L by | < I’ for [,I’ € L if and only
if | was memorised before . The order of the elements in each sequence is then defined
by:

Vmi,ijM/\mi<mj<:>i<j (3.19)
Vli,leL/\li<lj<:>i<j (320)

This order is obtained when images are recorded successively and added to the se-
quence by simply appending each newly acquired image to the end while moving through
an arbitrary scenery. From this structure two characteristics become obvious. One is
that there is a temporal link between neighbouring images because neighbouring im-
ages where taken successively through time and it can be said that the temporal link
between neighbouring images m; and m;y; becomes stronger the shorter the time dif-
ference between successive recordings is. Because of the latter there is also a semantic
link regarding the location where neighbouring images were memorised. This also means
that there is a possibility that two neighbouring images m; and m; 1 show at least partly
the same location and this possibility increases if there is a strong temporal link between
them. But this of course also depends on the movement speed through the scenery.

The main data structure that the OpenSeqSLAM algorithm operates on is called image
difference matrix, labeled D. This matrix consists of entries that encode the similarity
of all possible image pairs that can be formed by taking one image of the database
sequence and another of the localization sequence. In sections and different
pixel based metrics have been shown to determine image similarity and as mentioned
in the listed section OpenSeqSLAM relies on the mean absolute difference. So for each
pair the mean absolute difference is calculated and entered into the matrix.

As also shown in the figure the results of the pairwise image similarity comparison
are organized in the following way. Each row ¢ in the matrix corresponds to similarity
comparisons using image m; of the database sequence M. In direction of a column
J the similarity comparisons are calculated using image [; of the localization sequence
L. So it follows that the element d;; of D is the result of image similarity calculation
between m; and [;. In case of the OpenSeqSLAM that is the mean absolute difference
MAD(m;,l;). Since the M AD metric is actually a metric that is monotonically rising
with pixel difference for the two compared images the resulting entry d;; is inversely
related to similarity. To summarize a small value d;; corresponds to a low difference
and therefore to greater similarity, whereas a large value marks the opposite. In both
figures the values of entries in D are colour-coded, so that a light gray corresponds to
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Localization Sequence Localization Sequence

9o3uanbas aseqgejeq
9o3uanbag aseqejeq

(a) (b)

Figure 3.4.: Figure shows the difference matrix for a case of identical database and
localization sequences using M AD. Entries on the diagonal have maximum
similarity because identical images are compared. Figure[3.4b|is a difference
matrix for the more typical case where the database sequence is not equal
to the localization sequence.

a large difference value and therefore low similarity. Darker shades of gray correspond
to low difference and greater similarity. In figure two examples of image difference
matrices are given. Figure [3.4a] shows the result of creating the image difference matrix
with identical database and localization sequences. Typical for this case is the zero
valued diagonal where the similarity of equal images is computed. The right image,
figure resulted from computing the matrix using two differing sequences, which is
the more usual case. It should be noted that as mentioned in the previous section the
similarity metric of OpenSeqSLAM is not invariant regarding image transformations that
are related to perspective changes. In the contribution of this thesis an alternative metric,
is integrated into OpenSeqSLAM and analyzed. This metric is the tangent distance and
it is used instead of the M AD. However the following continued description of how
OpenSeqSLAM operates after creation of the image difference matrix is indifferent to
the used similarity metric. A general description of what the algorithm does next on the
basis of the image difference matrix is to look for stretches of large similarity. However
before the image difference matrix is traversed there is a preprocessing step applied
to its entries. The authors of [Mill3], Mildford et al., call it image difference matrix
normalization. They found that using this processing step for localization sequences
that contain more than one element, a better localization performance is achieved. Their
argument in favour is that this normalization partly can negate bias effects like changes
in lighting. It is performed on each element in D using a number of surrounding elements
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in the same column. The definition is given by:

dij = _ dij—dp (3.21)
max (o4, Omin)

Where d;-j is the normalized difference value that is entered at position ,j in D.
Value dj, is the mean calculated over a range of k entries around d;; in the column j.
The nominator is divided by the standard deviation o4 of the k£ elements. To avoid
devision by zero a o, is defined and used for the devision in case o4 gets close to
zero. In figure the resulting effect can be observed, there the right figure shows the
normalized version of the left image difference matrix. It can be observed that after
normalization for some image regions the contrast appears to be enhanced. However as
Milford et al. also note, for single image based localization, meaning using a localization
sequence of length one, the normalization process would be counterproductive. The
reason for that is that in such a case the image difference matrix would be reduced to
a single column and the best guess for a localization match one could make is to look
for the minimal element in that column. Then normalization is simply unnecessary and
could obscure the true minimum.

Localization Sequence Localization Sequence

9duanbag aseqgeieq

92uanbag aseqeieq

(a) (b)

Figure 3.5.: The two figures visualize the effect of the difference matrix normalization.
The computed image difference matrix before normalization is shown in
figure Figure [3.5b| represents the normalized version of this image
difference matrix according to equation

After building the image difference matrix and performing the step of normalization
the OpenSeqSLAM algorithm proceeds with searching for so called minimizing sub-
routes within the image difference matrix. These sub-routes can be generally described

18



3.2. Underlying Theory

as connected regions of low difference in the image difference matrix, that resemble line-
like shapes. A most obvious form of such a sub-route can be observed in the before
mentioned figure on the diagonal of the image difference matrix. For that example
OpenSeqSLAM should find the slope traversing the diagonal as being the most mini-
mizing one and return its point of origin in the left upper corner. Minimizing in this
context means that the average of all image difference matrix entries that are traversed
by the slope is smaller than the sum of other possible slopes. The process of finding the
minimal slope is exemplified in figure [3.6]

Localization Sequence

923uanbag aseqejeq

<

Figure 3.6.: The figure shows an image difference matrix with highlighted minimal slope
search. For each starting search position in the left column, marked by a red
dot, a range of slopes is traversed. For the first position this is highlighted
by the semi-transparent red area. Shades of green represent image similarity
values, the darker the color, the more similar are the two compared images.

There an arbitrary image difference matrix is shown. The search for the minimal
slope always starts at an element in the left most column. In the example image this
is emphasized by red dots. Starting from these points a number of possible sub-routes
originating there are followed through the matrix as shown in the example by the solid red
line and red semi-transparent area. The semi-transparent red area symbolizes possible
other sub-routes that will be traversed for other slopes. For each matrix entry that is
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traversed during a sub-route traversal its difference value is added to an accumulative
value that is initialized with zero in the beginning. This value is called sub-route score.
Since there is a range of possible slopes for each starting point there is an equal number
of scores for each sub-route starting point. When all scores are calculated for one starting
point the minimal score of them is selected and saved. After this has been done of all
starting points the one with the smallest score is chosen. This is the candidate that is
finally returned by the algorithm as best matching memory to the input sequence.
The described process returns a database index d,;, and can be defined as follows:

dmin = arg 1I§I?§nm s(1) (3.22)

Where s(7) is the minimum score over the range of k slope possibilities at starting po-

sition ¢ in the database. The minimizing expression in equation [3.23] gives the definition
of s(i) as:

A~

s(i) = mind; (3.23)

Where d; contains all the k scores generated for each slope starting at 7. Each element
in cz, is obtained by summing up the elements traversed for the range of possible slopes
k. The possible variety of slopes can be constrained so that each sub-route contains
the same number of elements, this would be typically be the number of elements in the
localization sequence, which is equal to the number of columns in the image difference
matrix. If the number of elements is not the same for the sub-routes a normalization step
is required, so that the final accumulated score is divided by the number of elements
in the sub-route. However the implementation of the algorithm contributed by this
thesis uses equal length sub-routes and therefore score normalization was not needed.
This concludes the fundamental description of the OpenSeqSLAM algorithm. In the
following chapter this basis will be used to describe the realization of the evaluation
software for the OpenSeqSLAM and modified version using the tangent distance.
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As mentioned in the first sections, one goal of this thesis was to explore the properties
of a localization algorithm that combines OpenSeqSLAM with a more transformation
invariant image similarity metric, the tangent distance. Although it would have been
possible to simply implement the standard OpenSeqSLAM algorithm as well as to design
and implement the modified OpenSeqSLAM using tangent distance this approach would
not have been very flexible regarding evaluation, understanding and testing. Instead a
GUI application software was realized that embeds the localization algorithm implemen-
tations and enables the user to interactively choose and view input sequences that are
passed then as inputs to the algorithms. This software was named Dream Viewer. The
application name should reflect partly the intended data structures on which the local-
ization algorithms should run in the context of Myon. What is referred to are dream
sequences. These are the actual data structures that were designed for the Myon to
hold, in addition to other data, the image sequences. The focus in this chapter is on
the image sequences, what kind of other information and what purpose they might serve
is discussed in a later chapter. In the following sections first the software is described
regarding its architecture and features. After that, in section some experiments and
results are presented that also include tests using the DreamViewer software. In the last
section of this chapter conclusions are drawn, gained from these tests. It should be noted
that the primary question that is addressed in this chapter is: Can the tangent distance
be beneficial to the image sequence based localization process under the influence of
perspective changes? However there was first no constraint given regarding memory
usage and processing time. These algorithmic attributes are of course very important
especially considering the algorithm should perform on a robotic embedded system. So
these aspects and how they were addressed is described in a separate chapter, following
this one.

4.1. DreamViewer - Software Requirements

The aim of the Dream Viewer application was to make it possible to combine the imple-
mentation of the image sequence based localization algorithms with a simple GUI that
enables the user to select inputs for the algorithms in an intuitive and flexible way. Since
the primary data on which the algorithms that are evaluated in this chapter operate are
sequences of images the main requirement was to visualize these sequences and select
sub-sequences. An important aspect to deal with was, that these image sequences can
be represented in different ways. For example as mentioned in the introduction to this
chapter there is the representation in the form of dream sequences, that is the used for-
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mat for image sequences that are recorded and used on the Myon. Since the image data
is embedded together with other information in a binary format, it became necessary
to build a parser to extract the images saved in this format. In addition to the dream
sequences format it is desirable to use and test the algorithms with arbitrary collections
of saved images interpreted as image sequences, so DreamViewer was built to support
these as well. In addition to that the software was intended to perform with reasonable
performance, since the memory and computational demands were anticipated to be high
for larger image sequences and greater image resolution. The requirements can finally
be summarized as follows:

e flexible testing of image sequence localization algorithms
e possible to select sequence parts

e visualize results and selections

e modular and easily extensible

e reasonable performance

e able to be build and run on multiple platforms

4.2. Software Architecture and used Libraries

In this section a brief overview on how the DreamViewer software is structured from the
viewpoint of software architecture is presented. Furthermore, reasons will be given why
certain software libraries and frameworks were chosen. The DreamViewer software is
structured in very modular way, so that the functionality of the localization algorithms
is as isolated as possible from the GUI modules. This has been done to implement a
maximum reusability of the modules and makes it more simple to extend and maintain
the software. Because of the requirements summarized in the previous section the
OpenCV image processing library and the cross platform GUI framework Qt have been
chosen for this implementation. OpenCV and Qt are natively available in the C++ pro-
gramming language. Another reason why C++ has been chosen for the implementation
is its object oriented capabilities and interoperability with the C language. This was
of advantage because the recorded dream sequences were obtained on the Myon with a
C implementation in plain C style structures. In the following paragraphs the libraries
that the implementation relied on are briefly presented.

OpenCV

OpenCV is a BSD licensed open source computer vision library. It is implemented
with the aim to be computationally efficient and utilizes a wide range of hardware
acceleration capabilities. These include support of CPU SIMD operations like SSE4 and
NEON instruction sets as well as parallel computation usage via OpenCL on GPUs and
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multi-core CPUs. Since DreamViewer was aimed to be runnable on not just one platform
another positive aspect is that OpenCV builds are available for Linux, Android, Windows
and 10S. The library is available, among other programming languages, in C++, so it
could be used without any obstacles for this implementation. The used APT version was
2.4.8. Naturally, OpenCV was used to process the images but was used isolated from the
GUTI functionality. A more detailed introduction and overview of OpenCV is presented
by Pulli et al. in [PBKE12] and also well presented E| and documented E| on the OpenCV
website. .

Qt

Qt is an open source application programming framework including GUI creation func-
tionality. It offers cross platform capabilities so that the same Qt implementation can be
used without modification on Linux/X11, Android, Mac OS, iOS, Windows, WindowsCE
and Blackberry. As mentioned before, it is natively available in C++ and offered for
the named reasons a good choice for the visualization. For this implementation the
Qt version 5.3.3 has been used. More detailed information about this version and Qt
in general can be obtained from the Qt website ﬂ Although Qt offers a vast range of
features only a very small part of them has been used for this implementation.

In figure an overview of software components in connection with DreamViewer
is given. In the figure the GUI module, labeled DreamViewer, is separated from the
localization algorithm implementations and the image similarity metrics module. Only
the GUI is dependant on the Qt libraries. The image similarity metrics module contains
the implementations of the tangent distance, mean absolute difference and the euclidean
distance. This module is used by the implemented localization algorithms, that are the
OpenSeqSLAM and the OpenSeqSLAM with tangent distance. Further it can be seen
that the DreamViewer implementation relies on the implemented localization algorithms.
All implemented modules depend at least to a small degree on the OpenCV module,
because the data type that is used for common image data access between the modules is
the OpenCV Mat matrix type. This type is also used for the main processing calculations
in the image similarity and localization algorithms modules.

Since all used and implemented software components are open source every step of
execution can be traced and understood.

In the following paragraph the main features of DreamViewer will be shown by pre-
senting a typical use case scenario. In figure|4.2|a screenshot of the running DreamViewer
application is shown. As mentioned before the main input data the evaluated algorithms
operate on are image sequences. Therefore the first step when using DreamViewer would
be to load such a sequence. DreamViewer at the moment supports three different image
sequence types. These are:

1. binary format dream sequence

"http://opencv.org
Zhttp://docs.opencv.org
Shttps://qt-project.org
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Figure 4.1.: DreamViewer application and associated modules. Dependencies are indi-
cated by arrows. The dotted line separates software components developed
in this contribution from used libraries and frameworks. The former are
shown by rectangles with green borders and the latter by rectangles with a
yellow background.

2. binary format reduced dream sequence
3. arbitrary image collections

As mentioned before in this chapter, the dream sequence type is used for image se-
quence recordings on the Myon robot. It is a binary format and not only contains plain
image data but also additional data like for example various sensory outputs. How-
ever in its current implementation state the DreamViewer application only parses the
grayscale image data parts in the dream sequence. Although the implemented localiza-
tion algorithms only use one channel grayscale images the dream sequence format holds
the full color images format which might be useful for future localization algorithms
or are just more favourable to the user when viewing the sequence. All details of the
dream sequence datatype can be examined in the C header file containing the structs
definitions. This header file is provided along with the rest of the code for this thesis.
The second type, reduced dream sequence, is similar to the first one regarding that it is
also used for saving data on the Myon and is binary, but it is a thinned out and trimmed
version of the first sequence type. For example it does not hold the full color image
data but instead single channel 8-Bit grayscale image data. This was done to decrease
memory usage and to lower the writing to memory time when recording the sequence.
The additional information are largely reduced to sensory data that holds orientation
information of the robot head, that is the visual center of the Myon. Again the precise
definition is given in the C-struct definition and DreamViewer currently only uses the
visual data part. Lastly the third data sequence type are arbitrary collections of single
images. These are passed to DreamViewer by referencing an index file. This index file
contains all paths to the images that should be used for this sequence. These paths are
stored as human readable strings and there is one image path defined per line. The order
of the paths defines the position of the image in the resulting sequence, so that the path
in the first line points to the image that will be first in the sequence, the second line to
the second image in the sequence and so on.

After loading a few image sequences of interest the user can review them and select
parts of the sequences as input for the localization algorithm. In figure a view
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Figure 4.2.: Sequence Selection window of the DreamViewer application.

of the selection process is given. Two sequences are selected, these are the database
sequence and the localization sequence. The database sequence is chosen by a drop
down menu in the upper part of the application window. This menu lists all image
sequences that have been loaded so far. Similar in function there is a second drop
down menu, by using it the localization sequence is chosen. After both sequences are
selected four image display areas are visible. Two are grouped with the upper drop
down menu of the database sequence and another two with the localization sequence
drop down menu. These display areas show single frames of the sequences selected by
the drop down menus and each one is connected to a selection slider positioned below
them. They are intended to select a sub image sequence that is then used as input for
the localization algorithms. This is done for the localization sequence by positioning
the left bottom slider to the start frame and the right bottom slider to the end frame.
The sequence number of the currently selected image is displayed in a red LCD-style
numeric indicator between the image and the slider. In the example figure the sub
sequence chosen as localization sequence input starts at frame 7700 and ends at frame
7916. Naturally the sliders can only be moved to form reasonable selections, so that the
start sequence number is always less or equal to the associated end sequence number.
After a selection has been made the localization algorithms can be executed with the
given input by pressing the Start Localization button. The implemented algorithms use
a multi-threaded approach to perform the image difference matrix calculations and the
search in the image difference matrix so that multiple CPU cores are used. This has
the advantage of reduced processing time for larger image sequences or higher image
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resolutions. However more working memory is consumed during processing. In many
cases multiple sub localization sequences of a larger localization sequence are tested in
DreamViewer, but it would be desirable to avoid for each of these sub-sequences the
time consuming calculations of new image difference matrices. This is done by first
calculating for the complete database sequence and the complete localization sequence
the full image difference matrix. If then a sub-sequence is selected by using the sliders
a sub-matrix of the complete image difference matrix is referenced and therefore any
new image similarity calculations are avoided. So although there is initially a greater
processing time to be expected for the construction of the complete image difference
matrix, subsequent test runs complete much faster, which has been confirmed testing
the application.

4.3. Experiments and Results

In the following section a detailed description of experiments conducted by using DreamViewer
is given. The aim of the experiments was to find out if there are situations where

the OpenSeqSLAM algorithm using tangent distance performs better than the original
OpenSeqSLAM algorithm using the mean absolute difference. This has been done by
conducting an experiment using dream sequence datasets recorded on the Myon robot in

a real world indoor environment. Later experiments use larger datasets in combination
with the separately applied image transformations rotation, scaling and translation in
horizontal and vertical direction as well as different image resolutions.

DreamViewer experiment with KOB dataset

The dataset used for this experiment is named KOB dataset in reference to its recording
location in a room at the Komische Oper Berlin. All used sequences where recorded in
a single room but from different positions. For the following experiment three different
sequences are used. For each sequence, the Myon head, that includes the recording
camera, was setup at a fixed position. After starting the sequence recording a slow
panning shot from the left to the right was captured. In total 20 images were recorded
during the complete movement and an approximate 180 degree range was covered. The
used recorded images had a resolution of 25 pixels in width and 20 pixels in height.
The data recording setup is outlined in figure It shows a layout view on the
recording room and some landmark objects that can be identified in the recorded images.
In total, three different recording locations were used, these are indicated by colored
circles in the figure. The first recording position for the first dream sequence is marked
by a red circle. The Myon head was located at this position and 20 images were recorded
while panning from left to right. The capture direction of each recorded image during
this pan movement is indicated by the dotted lines originating in the center of the circle.
At the remaining two positions similar recordings were performed. In the figure the
green and blue circles mark the locations of the second and third sequence recordings
respectively. The center of each recording location is separated by equal distances of
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Figure 4.3.: Outline of the location used for KOB dataset recording. The first recording
position is indicated by a red circle, the second by a green and the third
by a blue circle. Colored rays indicate directions of image recordings. The
position of the projection screen, identifiable in the recoded images, is repre-
sented by the black line. Positions of other identifiable objects are indicated
by black symbols as well. These are a group of sitting people to the right
of the recording positions, a set of empty chairs to the left and a black, box
shaped object, to the right of the projection screen.

approximately 1.5 meters. This kind of position change had different effects on the
recorded images. In figure it can be seen that the recording position was moved
effectively in parallel to the left and right wall or towards the projection screen. Images
that were recorded in direction of the movement show predominantly a scaling effect
between different recording locations. For example the projection screen is visible in
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images recorded at the green position but also in images that are recorded at the blue
position only that the projection screen will appear larger viewed from the blue position.
This can be verified by comparing the two images Another effect that can be observed
is translation in horizontal direction. This effect will become largely visible for images
shot in orthogonal direction to the recording position movement. These are the images
facing the left and right wall. Though not actively provoked, but also not willingly
prevented, small rotations and translations in vertical direction are also present between
the different sequences. In conclusion a mix of the following image transformations is
summarized that can be present between images of the sequences:

e scaling
e horizontal translation

e small rotation and vertical translation

In the following experiment a test will be conducted if the OpenSeqSLAM with tangent
distance and the standard OpenSeqSLAM implementation with mean absolute difference
are able to recognize an image subsequence recorded at the colored green and blue
position respectively when the image sequence recorded at the red position is used as
image database sequence. Each of the three sequences holds 20 images but for the sake of
clarity in the following description only a smaller selection of images is shown. However,
the complete sequences are included in the appendix[A] Each sequence was recorded with
a resolution of 25 pixels in width and 20 pixel in height. Although at first impression
this seems to be a low resolution, for humans it is still possible to identify many objects
and characteristic features of a room by looking at images of this type.

The results of the experiment are first summarized in tabular form and will be dis-
cussed with illustrating figures afterwards. In the first column the local input image
indices are listed from top to bottom in ascending order. The second column takes ref-
erence to this column. Each entry in the second column lists images of the database
sequence that should be recognized as being similar to the local input image that is listed
in the same row in the first column. Similar in this case means that a human recognized
the depicted scene of the local image to be closely related to the listed database images.
Since the data was recorded in a real indoor environment, in some images, objects that
are visible in one direction and close to the recording position, like for example a chair,
can cover large parts of the scene. In these cases it was, even for a human, not possible
to recognize the scene and no matching indices in table are listed. In this experiment
this was the case for images of the beginning and the end of the sequences. Of course the
problem of these non recognizable images is usually bypassed by using a larger localiza-
tion sequence length. In this first experiment in total only 20 images were recorded and
used. The localization sequence length was chosen in proportion to that number and set
to a value of two. The reason for that was to focus more on the image similarity metric
instead of gaining too much information by choosing a larger sequence size. The last two
columns in the table list the results of the OpenSeqSLAM algorithm variants using mean
absolute difference and tangent distance. To summarize, each row lists the localization
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results of the two OpenSeqSLAM variants in the last two columns where the first local
input image for both algorithms is listed in the first column and the acceptable result
images are listed in the second column. This means a localization result of an algorithm
is considered correct if it is listed in the second column. Since the matching database
images in the second column were composed by a human and therefore can be considered
subjective and also the overall database sequence length is relatively small it should be
noted that these first tests are not intended to prove superiority of one algorithm over
the other but instead should show that localization is possible with the contributed im-
plementations and to give some example of certain tendencies and challenges. In later
tests each algorithm will be challenged with a greater emphasis on precise localization
performance.

First the algorithms were presented with the input images recorded at the second
recording location highlighted green in figure [4.3

Table 4.1.: Results of image sequence recorded at position 2 using position 1 sequence
as database.

Indices Position 2 | Matching Database Indices | OpenSeqSLAM MAD | OpenSeqSLAM TD
3 2 6 6
4 3 7 6
5 3 7 7
6 4,3 0 7
7 5,4 0 9
8 5, 6 6 6
9 7 7 7
10 9, 10, 11 1 11
11 13, 12 12 12
12 13, 14 13 14
13 14 13 13
14 15, 14 7 7
15 16 8 8
16 17, 16 9 9

Again the experimental results are listed in tabular form for the third recording posi-
tion highlighted in blue in figure

Naturally, the numeric values in the presented tables alone are not much intuitively
comprehensible, so in the following, the results will be interpreted and summarized by
using underlying example images taken from the input sequences and the database se-
quence. In general two observations can be made from the results. First the algorithms
recognize the short local image sequences taken in direction of the presentation screen
fully in case of OpenSeqSLAM with tangent distance and partly in case of the mean
average distance variant. This is reflected by the middle rows in table and table
Secondly in this experiment they seem not to recognize local images recorded orthogo-
nally in direction to the presentation screen. These results are reflected by the top and
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Table 4.2.: Results of image sequence recorded as position 3 using again position 1 images
as database.

Indices Position 3 | Matching Database Indices | OpenSeqSLAM MAD | OpenSeqSLAM TD
4 3 7 7
5 4 8 7
6 5 6 9
7 5, 6 0 6
8 6 7 6
9 7 0 7
10 8 1 10
11 9, 10, 11 11 11
12 11, 12, 13 11 11
13 13, 14 10 10
14 14, 13 10 10

bottom rows.

The results in the middle rows of the tables can be better understood by looking at the
images in figure[4.4] The three images show the presentation screen centered in the view.
This object is easily recognizable also for a human because of its rectangular shape and
relatively homogeneous intensity. Differences between the images are present because
of scaling and small translations. The OpenSeqSLAM with tangent distance correctly
matches this view for recording position 2 shown in figure [£.4b and position 3 shown in
figure to the database image, recorded at position 1 and shown in figure [£.4a]

(a) Database (Position 1) (b) Position 2 (c) Position 3

Figure 4.4.: The three images show the presentation screen centered in view for all three
recording positions.

The same images are matched by the OpenSeqSLAM algorithm using mean absolute
difference correctly in the case of recording position 2 but incorrectly for the view at
position 3. However, further tests showed that the MAD variant matched the position
correctly as well when using localization sequence sizes greater than two.

As mentioned above, both algorithms were in error when facing localization images
facing the left and right wall. The poor results in direction of the left and right wall can
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be at least partly attributed to objects positioned close to the Myon head and thereby
causing large differences in the image when the recording position was changed. They
also hid most other features visible in that direction of the room. In the figure 4.5 an
example is given where such an object is visible and might have had an adverse effect
on recognition performance. Again the three images were shot from the three recording
positions. The first image was taken from position 1 and used in the database. The view
is directed to the right wall and in the left part of the image the far right corner of the
room and the black box object can be identified. Both other images in figure were
recorded facing roughly the same direction. What is different is that in the database
image a person sitting on a chair is fully visible in the center right part of the image,
covering the rest of the view partly. In the middle image this person is not visible, only
partly a chair and a person can be identified at the outer right of the image border. In
the third image nothing of the aforementioned is visible.

(a) Database (Position 1) (b) Position 2 (c) Position 3

Figure 4.5.: The images show the view towards the corner right of the presentation screen
for all three recording positions. In one case the view is partly blocked by a
chair.

This concludes the first experiment and the following aspects can be summarized.
Both algorithms were able to perform correctly scene recognition despite perspective
changes. However objects relatively close to the recording position can cover major
parts of the image and possibly contribute to wrong recognitions.

4.3.1. Experiments using Nordland dataset

In this section, a second experiment for testing the OpenSeqSLAM variants using mean
absolute difference and tangent distance will be described. The focus is set on using
larger databases and precisely setup image transformations to explore the localization
performance of both algorithms operating on transformed input image data. The used
dataset is called Nordland dataset and was used in the context of OpenSeqSLAM by
Siinderhauf et al. in [SNPI3] and [SNPI14] to determine localization precision. This
dataset is a collection of images obtained from four HD movies of the Nordland Line
filmed at all four seasons of the year. These movies are produced by the Norwegian

31



4. Offline Implementation

broadcaster NRKbeta and made available under a creative commons license[] They can
be obtained online from NRKbeta at their website[’] The Nordland Line is a railway line
connecting the two Norwegian cities Trondheim in the south and Bodg in the north. So
each movie shows the same railway line at a different season. With a total rail length of
729 kilometers it provides a large variety of natural scenery and different artificial objects
like houses and bridges along the track. The movies are set apart by the influence of
the seasons, for example snow cover in winter or different vegetation periods. Originally
these movies were produced by the Norwegian broadcaster NRK and licensed under
Creative Commons. Each movie was recorded by mounting a front facing camera into
the cockpit of same type locomotives. All recordings were shot in an original resolution of
1920 pixels in width and 1080 pixels in height. Furthermore, a continuous GPS tracking
was performed. Afterwards, each frame of the four different movies was synchronized
using the GPS data, so that in effect for each movie the frame number k is equal in
location and perspective to the frame number k of all other sequences. Siinderhauf et
al. modified these movies to a downsampled version of 64 pixels in width and 32 pixels
in height and obtained per movie one set of grayscale images by saving every second the
current frame. So in result there is one image set for each season. The dynamic range
for each pixel in the downsampled grayscale images is 0 to 255 at 8-Bit. Further details
on how the downsampling was performed are explained in [SNP13]. Some examples of
the downsampled frames can be seen in figure There, a frame obtained from the
original Nordland winter recording is shown together with its matching image in the
nordland winter dataset. It can be seen that for humans characteristic objects like for
example houses, mountain formations, single standing trees and the bending pattern of
the rails can still be distinguished at the lower image resolution variant.

The following localization experiments involve a number of image transformations
being applied to the original images to various degrees and tests with different im-
age resolutions to see how these parameters affect the localization performance of both
OpenSeqSLAM algorithms using mean abolute difference and tangent distance. In the
experiment a part of the Nordland winter dataset was used. This dataset includes 800
images corresponding to a 13 minutes and 20 seconds clip of the original movie. These
800 original images were used as database sequence for all here described experiments.
Each localization algorithm was confronted with transformed versions of the database
sequence as local input. This was done by performing 800 separate localizations for each
transformed image set for each algorithm so that of one transformed image set each
image was used as starting point for a localization run. The expected correct result for
each of these runs is, that for a given transformed local image k, used as starting input,
the localization algorithm should return k as localization result for a correct answer,
because the image k is, except for the applied transformation, identical to the image k
in the database. The parameter localization sequence length has been set to 10 images,
meaning that after the starting local input image 9 more directly succeeding images of
the transformed image set were passed to the algorithms. To clarify this an example

4https://creativecommons.org/licenses/by/3.0/
Shttps://nrkbeta.no/2013/01/15/nordlandsbanen-minute-by-minute-season-by-season/
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4.3. Experiments and Results

N'K

(a) Original Nordland frame

(b) Nordland frame processed

Figure 4.6.: The two image depict a single frame of the Nordland dataset before (fig-
ure and after pre processing (figure . Before processing the image
is colored and has a resolution of 1920 pixels in width and 1080 pixels in
height. The processed image is a greyscale image with 64 pixels in width
and 32 pixels in heigt.

for one specific image transformation experiment can be given as follows. One trans-
formation that was applied to the original images was rotation and an image set that
consists of all the images of the database sequence rotated by 15 degrees was created.
At beginning the first image of the rotated image set and its nine successors were passed
as local input to the OpenSeqSLAM with mean absolute difference and OpenSeqSLAM
with tangent distance. In case of a correct answer the algorithms need to return the first
database image index as a result. This experiment is then repeated for the image local-
ization sequence beginning at the second image of the rotated image set and so on until
each of the 800 transformed images was once used as a starting point. As mentioned
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before a number of different transformations have been used with different parameters.
What kind of images in addition to the original Nordland sets were exactly created is
detailed in table There, each row lists what kind of data sets were generated for one
of the used image transformation types. The last column specifies the unit of the used
parameter and the second to third column represent the applied range of this parameter.
For example from the third row it can be understood that 141 different rotation image
datasets were created, using a rotation in degrees out of the range —35, —34.5, —34, .., 35
degrees for each of them.

Table 4.3.: Parameters used for localization experiments.

Transformation type | Range Start | Range End | Step | Comment and Unit
Translation x -18 18 1 translated Pixel
Translation y -18 18 1 translated Pixel

Rotation -35 35 0.5 angle in Degrees
Scaling 1 3 1 zoom Factor

To create these datasets, a Python script was created that parses for a given directory
all subdirectories and transforms the image files therein according to passed command
line parameters similar to those specified in table In addition to that each image
set was created in different image resolutions. Meaning that beginning with the base
resolution of 64 pixels in width and 32 pixels height downscaled versions of the images
were created and used for testing. Inducement for experimenting with different image
resolutions in the context of image sequence based localization was the paper by Michael
Milford called ” Vision-based place recognition: how low can you go” [Mill3], which was
one of the idea giving cornerstones for this contribution as mentioned in the introduction
section. In this work Milford et al. look, in the context of OpenSeqSLAM using MAD,
at how localization performance develops when reducing the information content of the
database and input images for example in terms of total number of pixels per image
and the dynamic range per pixel. One of the main results of said paper is that image
sequence based localization can be precise at high recall rates when using a surprisingly
low number of pixels and further finds that localization performance can suffer in some
cases when image resolutions is chosen too high. Because of these findings it became
imperative to look in addition to the different translations at a number of different
image resolutions for the described experiment. Another important reasons why lowering
image resolutions should be considered is that it can be expected advantageous regarding
processing time and memory consumption, which will be elaborated in a later chapter.
The used resolutions were:

e 64 pixel width, 32 pixel height
e 32 pixel width, 16 pixel height

e 25 pixel width, 20 pixel height
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e 18 pixel width, 16 pixel height
e 12 pixel width, 10 pixel height
e 8 pixel width, 6 pixel height

In case of the 12 pixels in width and 10 pixels in height images and certainly for 8 pixels
in width and 6 pixels in width image resolution, even larger objects become reduced to a
few pixels and can not be recognized by humans. It is then hopeless to identify a correct
match on the basis of a single input image in combination with a larger image database.
However, due to the use of a sequence of input images, as shown by Milford, even in those
cases correct recognition becomes possible because of the combination of multiple single
images that only faintly hint the original depicted location due to the reduced resolution.
Of course based on the presumption this is only possible if the sequence in the database
is at least partly similar to the input sequence. The base resolution being 64 pixel in
width and 32 pixel in height the image transformations were applied before resizing
the images. This was done to ensure that the amount of transformation is comparable
between the different resolutions. Otherwise for example a translation applied to an
image in 12x10 resolution by one pixel in horizontal direction would correspond to a
significantly larger lateral perspective variation than a translation by the same amount
on the 64x32 images.

In the above paragraph it has been said that in the experiment a localization result
was considered correct if for an input image sequence the index of the correctly matching
database image was returned. Due to the strong semantic link between images of the
dataset it is however also of interest to note how far off the results returned by each lo-
calization algorithm were. If for example for all performed localization runs an algorithm
returns an index that differs from the correct image position by two, this algorithm can
still be considered performing better than an algorithm that only exactly once returns
a perfectly correct result but differs with a maximum offset for all other localization re-
sults. In conclusion for each transformed image set different error measures were looked
at. First there is the mean absolute error (MAE), defined in equation as:

1=, ;
MAE (= — k‘z - k‘l 4.1
IS (4.1)

Where n is the number of performed localizations, that is in this case n = 800, k; is
the expected correct database index for the localization ¢ and k; is the result that was
returned by the algorithm. From this definition it can be seen that this error measure
takes into account how close on average the algorithm was to the original image location
in the database. It should be noted however that it is possible that in some cases
the transformed version of the input image might indeed be more reminiscent of another
database image instead of its untransformed original in the database. The MAE however
is of course oblivious to these situations and might punish such a result of a localization
algorithm even if a human would consider it to be correct. The possibility for that
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increases for a larger database but in case of the used 800 images sets should not be a
dominant influence.

Another used localization error measure was the precision. In this context the precision
is defined as:

o cl
b=

Where ¢l is the number of correct localizations and fl is the number of false local-
izations. A localization is considered correct only if the algorithm returns a database
index that is either exactly the index of the original untransformed image or differs only
by one from that position. This is in contrast to the MAE a more binary measure in
the sense that a result is either correct or false with nothing in between and can give
an idea how often in relation to all localization runs the algorithm hits the nail on the
head precisely. A definition of precision can not go without giving reference to the recall
rate, sometimes referred to as sensitivity. Because in the performed experiments the
algorithms were confronted exclusively with input images that are represented in the
database and were not allowed to opt out by indicating that the input is unknown to
them, the recall rate is 100 percent. This means the algorithms were forced for every
input to return a best effort solution.

Other related measures that were computed are standard deviation and mean squared
error (MSE). In the following the results of the experiments will be presented and later
discussed.

(4.2)

4.4. Offline Implementation Experimental Results

In this section the results of the experiment described in section [4.3.1] are presented. To
visualize them a set of figures is presented. However the numeric results that these figures
are based on are provided separately with this contribution. The results are separated
by the six different image resolutions. To be able to focus on the main characteristics of
the results mainly one of the four used image transformation types, that is the rotation
operation, will be presented in this section. Notwithstanding that some connections to
the other image transformations are outlined and the results in full can be found in the
appendix

In the following results at least two figures for each tested image resolution are pre-
sented. One of them is a plot of the mean absolute error over the applied image rotation
in degrees. The other figure is a plot of the calculated precision value according to
equation and the definition given in the previous section The precision is also
presented in dependence to the applied image rotation in degrees.

To make the results of the different resolutions more comparable a set of attributes has
been picked out. Those attributes will be compared for all the resolution experiments.
These are:

1. general difference between OpenSeqSLAM and OpenSeqSLAM-TD
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2. points of result graphs intersections indicating performance inversion

mean absolute error at and between -10 and 10 degrees of rotation

Ll

mean absolute error around -20 and 20 degrees of rotation
5. mean absolute error tendency around -30 and 30 degrees of rotation

6. precision tendency around -30 and 30 degrees of rotation

With larger degrees of image rotation it was expected and confirmed by the results,
that the precision of all algorithms monotonically gets smaller. Because of that it became
possible to analyze for each resolution the following questions regarding the precision of
the algorithms:

e When is the precision is 17

e When is the precision at least 0.987

When is the precision at least 0.957

When is the precision at least 0.907

e When is the precision at least 0.807

Results of the experiment with the smallest image resolution of eight pixels in width
and six pixels in height are presented in figures It can be seen in the upper figure,
that outside the interval -10 to 10 degrees in rotation, the mean absolute error of the
OpenSeqSLAM-TD algorithm is smaller than the error of the original OpenSeqSLAM
algorithm for the tested range. With increasing rotation in either direction the difference
between the OpenSeqSLAM-TD and OpenSeqSLAM-MAD error and precision further
increases.

Selected numeric results of the mean absolute error for the smallest image resolution
are presented in table It can be seen there that the OpenSeqSLAM-TD had a lower
error for this experiment at all sampled positions than the algorithm using the mean
absolute distance. It is also observable that the difference in error between the two
increases steadily for increased degrees of rotation. A comparison regarding precision
is detailed in table From the numeric values in this table it becomes clear, that
the OpenSeqSLAM-TD algorithm in the majority of cases maintains for larger ranges of
rotation a higher precision value than the mean absolute difference variant.

For images with a resolution of 12 pixels in width and 10 pixels in height the experi-
mental results are presented in graphical form in figure and numeric excerpts of these
are presented in the table and table sampling precision and MAE respectively.

The results show that for this resolution in case of the OpenSeqSLAM-TD over the
rotation angle range from -20 to 20 degrees higher precision is achieved than for the
smallest image resolution. This can be seen in table where in the before mentioned
rotation range, in case of OpenSeqSLAM-TD, the precision not drops below a value of
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Figure 4.7.: Results of localization experiment using Nordland winter 8x6 images.

0.80. For the same algorithm clearly the mean absolute error is also smaller in the -10
to 10 degrees rotation range than it was for the smallest resolution which can be seen in
table [£.71 The OpenSeqSLAM-MAD also improves slightly but the changes are not as
large. However for rotations beyond -20 degrees or 20 degrees the precision drops more
sharply than in the case of the lower resolution image and the mean absolute error is
also greater.

The next larger image resolution that was experimented with were images with 18
pixels in width and 16 pixels in height. The results are presented in figure and
numeric excerpts are listed again in tabular form. This is done for the precision in
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Table 4.4.: Excerpt of the precision results gained from the rotation experiment with
images of 8 pixels in width and 6 pixels in height. The interval entries mark
the rotation degrees range where the precision specified in the first column

is achieved.

Precision | OpenSeqSLAM-MAD | OpenSeqSLAM-TD
= 1.00 [—6.0,6.5] [—5.0,6.5]
>0.98 [—8.0,9.0] [—9.0,11.5]
>0.95 [—10.0,10.5] [—11.5,14.5]
> 0.90 [—12.0,12.0] [—14.0,17.0]
> 0.80 [—14.5,14.0] [—18.5,20.5]

Table 4.5.: Excerpts of mean absolute error results from the rotation experiment using

images with 8 pixels in width and 6 pixels in height.

Angle [°] | OpenSeqSLAM-MAD | OpenSeqSLAM-TD
-30.0 205.28 157.39
-20.00 112.33 58.66
-10.00 6.96 4.45
10.00 3.10 1.22
20.00 121.15 36.79
30.00 210.86 128.65

table and mean absolute error results can be found in table Over the complete
rotation range the OpenSeqSLAM-TD variant achieved for this experiment a greater
precision value than the OpenSeqSLAM-MAD variant. For rotation degrees between
-30 and 30 the mean absolute error of OpenSeqSLAM-TD is lower for larger degrees of
rotation the mean absolute error was comparable for both algorithm variants.

It can be seen in table .8 that the rotation degree range in which a precision value of 1
is achieved is slightly wider for the OpenSeqSLAM-TD algorithm than it was for smaller
resolutions. Apart from the rotation range in which a precision value of 1 is achieved,
the OpenSeqSLAM-TD precision drops faster than in case of the smaller resolutions.
The OpenSeqSLAM-MAD algorithms performs equally or slightly worse compared to
images with smaller resolution. This can be seen for the mean absolute error in table
and also for the achieved precision listed in table

For images with a resolution of 25 pixels in width and 20 pixels in height according to
the results in figure it can be seen that the OpenSeqSLAM-TD generally achieved
higher precision than the OpenSeqSLAM-MAD algorithm. This becomes more clear
when looking at table However, while the precision of the OpenSeqSLAM-MAD
appears to be similar to results achieved at images with 18 pixels in width and 16 pixels
in height the tangent distance variant precision appears to have been slightly dropped
so that smaller rotation angle ranges are tolerated.

The mean absolute error has also increased for the regarded image resolution. In
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Figure 4.8.: Results of localization experiment using Nordland winter 12x10 images.

table it can be seen that the OpenSeqSLAM-TD has a smaller error for rotation
up to -20 or 20 degrees. In contrast to the lower image resolution results, for rotations
around -30 degrees, the mean absolute error of OpenSeqSLAM-TD was higher than
the OpenSeqSLAM-MAD error for this experiment. Similar for 30 degrees and above

performance of OpenSeqSLAM-MAD seemed to be comparable or superior compared to
OpenSeqSLAM-TD.

Images with a resolution of 32 pixels in width and 16 pixels in height show similar
performance to the images with 25 pixels in width and 20 pixels in height and the results
are presented in figure However the difference in error between OpenSeqSLAM-TD
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Table 4.6.: Excerpt of the precision results gained from the rotation experiment with
images of 12 pixels in width and 10 pixels in height. The interval entries
mark the rotation degrees range where the precision specified in the first
column is achieved.

Precision | OpenSeqSLAM-MAD | OpenSeqSLAM-TD
= 1.00 [—6.5,7.0] [—8.0,7.5]
>0.98 [—8.0,9.5] [—12.5,13.5]
>0.95 [—10.0,10.5] [—14.0,16.5]
> 0.90 [~12.0,12.0] [—16.5,18.0]
> 0.80 [—14.5,14.0] [—19.0,20.0]

Table 4.7.: Excerpts of mean absolute error results from the rotation experiment using
images with 12 pixels in width and 10 pixels in height.

Angle [°] | OpenSeqSLAM-MAD | OpenSeqSLAM-TD
-30.0 204.40 162.34
-20.00 116.79 51.48
-10.00 6.68 0.64
10.00 3.14 0.55
20.00 113.37 41.93
30.00 214.31 159.55

and OpenSeqSLAM-MAD for rotations larger than -20 or 20 degrees becomes slimmer.

The precision results in numerical form for the 32 pixels in width and 16 pixels in
height images are presented in table Compared to the results of table for
OpenSeqSLAM-TD the difference of achieved precision in the selected intervals is only
marginal but was slightly greater for the 32 pixels in width and 16 pixels in height image
resolution. The same applies for the OpenSeqSLAM-MAD algorithm. From table
it can be seen that the mean absolute error increases for both algorithms compared to
the lower image resolutions for rotations angles above -20 or 20 degrees. Between -10
and 10 degrees it is slightly lower than in the case of 25 pixels in width and 20 pixels in
height images.
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Figure 4.9.: Results of localization experiment using Nordland winter 18x16 images.
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Table 4.8.: Excerpt of the precision results gained from the rotation experiment with
images of 18 pixels in width and 16 pixels in height. The interval entries
mark the rotation degrees range where the precision specified in the first
column is achieved.

Precision | OpenSeqSLAM-MAD | OpenSeqSLAM-TD
= 1.00 [—6.0,6.5] [—9.0,7.5]
>0.98 [—8.0,9.5] [—11.0,11.5]
>0.95 [—9.5,10.5] [—12.5,14.5]
> 0.90 [~11.5,11.5] [~15.5,16.0]
> 0.80 [—14.0,14.0] [—18.0,18.5]

Table 4.9.: Excerpts of mean absolute error results from the rotation experiment using
images with 18 pixels in width and 16 pixels in height.

Angle [°] | OpenSeqSLAM-MAD | OpenSeqSLAM-TD
-30.0 199.49 188.94
-20.00 118.96 85.49
-10.00 8.52 0.31
10.00 4.17 1.69
20.00 116.22 67.10
30.00 214.91 181.95

Table 4.10.: Excerpt of the precision results gained from the rotation experiment with
images of 25 pixels in width and 20 pixels in height. The interval entries
mark the rotation degrees range where the precision specified in the first
column is achieved.

Table 4.11.:

Precision | OpenSeqSLAM-MAD | OpenSeqSLAM-TD
=1.00 [—6.0,6.5] [—9.0,7.0]
>0.98 [—8.0,9.0] [—10.0,10.5]
>0.95 [—9.5,10.0] [—11.5,13.0]
> 0.90 [—11.5,11.5] [—14.5,15.0]
> 0.80 [—14.0,13.5] [—17.0,17.0]

Excerpts of mean absolute error results from the rotation experiment using
images with 25 pixels in width and 20 pixels in height.

Angle [°] | OpenSeqSLAM-MAD | OpenSeqSLAM-TD
-30.0 195.11 202.21
-20.00 116.67 97.96
-10.00 10.16 3.31
10.00 4.66 1.93
20.00 116.95 89.03
30.00 211.27 200.46
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Figure 4.10.: Results of localization experiment using Nordland winter 25x20 images.
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(a) 32x16 rotation MAE
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Figure 4.11.: Results of localization experiment using Nordland winter images 32x16.
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Table 4.12.: Excerpt of the precision results gained from the rotation experiment with
images of 32 pixels in width and 16 pixels in height. The interval entries
mark the rotation degrees range where the precision specified in the first
column is achieved.

Precision | OpenSeqSLAM-MAD | OpenSeqSLAM-TD
= 1.00 [—6.0,7.0] [—9.0,7.5]
> 0.98 [—8.0,9.5] [—10.5,11.5]
>0.95 [—9.5,10.0] [—12.5,13.5]
> 0.90 [~11.5,11.5] [~15.0,15.0]
> 0.80 [—14.0,13.5] [—17.0,17.0]

Table 4.13.: Excerpts of mean absolute error results from the rotation experiment using
images with 32 pixels in width and 16 pixels in height.

Angle [°] | OpenSeqSLAM-MAD | OpenSeqSLAM-TD
-30.0 199.51 207.34
-20.00 119.95 101.37
-10.00 10.11 0.44
10.00 4.40 1.17
20.00 118.52 87.76
30.00 213.00 202.15

The highest image resolution tested had 64 pixels in width and 32 pixels in height.
The related results are visualized in figure It can be seen that regarding precision
both algorithms achieve similar results.

The numeric results of the experiments are given in excerpt for the achieved precision
in table It can be seen there that the OpenSeqSLAM-TD algorithm does maintain
the listed precision values for slightly larger rotation ranges than OpenSeqSLAM-MAD.
However overall the precision of both algorithms is lower in any case than for the smaller
resolutions. The same applies for the mean absolute error which is listed in table

4.4.1. Performance observations and discussion

Most sections of both OpenSeqSLAM variants, mean absolute difference and the tangent
distance computations can be processed in parallel. Both algorithms were implemented
with threads to make use of all CPU-cores, offered by the machine performing the ex-
periments. However especially for larger databases when testing with DreamViewer and
performing other experiments it became clear that performing a single localization takes
noticeable time. The most processing intensive calculations happen when generating
the image difference matrix. As explained in previous sections, to create this matrix
the similarity of each local input image in combination with each database image needs
to be calculated. For example in case of the experiment described in the previous sec-
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Figure 4.12.: Results of localization experiment using Nordland winter 64x32 images.

tion, using the 800 image Nordland database, for each transformed image set alone, over
640000 image similarity calculations were performed per algorithm. Of course in addi-
tion, execution of all calculations performed after creating the image difference matrix
also scale with its size. The time to find the minimizing path in the image difference
matrix behaves also proportionally to the range of considered slopes.

The results of both similarity metrics are real valued, so in terms of memory consump-
tion, the image difference matrix when representing the results as floating point numbers,
has a considerable size. That is because those data types typically use between four and
eight Bytes per value. So for the used image dataset, one image difference matrix took
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Table 4.14.: Excerpt of the precision results gained from the rotation experiment with
images of 64 pixels in width and 32 pixels in height. The interval entries
mark the rotation degrees range where the precision specified in the first
column is achieved.

Precision | OpenSeqSLAM-MAD | OpenSeqSLAM-TD
= 1.00 [—5.0,5.0] [—7.0,6.0]
> 0.98 [—7.0,9.0] [—8.0,9.0]
>0.95 [—9.0,10.0] [—10.0,10.0]
> 0.90 [~11.0,11.0] [—12.0,12.0]
> 0.80 [—14.0,13.0] [—14.0,14.0]

Table 4.15.: Excerpts of mean absolute error results from the rotation experiment using
images with 64 pixels in width and 32 pixels in height.

Angle [°] | OpenSeqSLAM-MAD | OpenSeqSLAM-TD
-30.0 197.73 221.46
-20.00 120.26 140.26
-10.00 10.52 10.02
10.00 5.63 3.45
20.00 116.62 123.55
30.00 213.70 220.11

up 5120000 Bytes in the experiment. This might be considered negligible on a modern
desktop machine but on robotic systems most system resources are heavily sought after
and precious so even this single matrix could already be too much to keep in working
memory.

In any case the tangent distance requires more computations than the mean absolute
difference metric because the tangent distance includes as final step a pixel based dif-
ference on top of all other performed operations. In the context of handwritten digit
recognition LeCun et al. compare various digit classifiers, including the tangent distance,
in [LIBT95]. They evaluate the metrics regarding their classification performance but
also analyze processing time and memory usage. Although for their example classifica-
tion performance is considered good, the tangent distance used up most memory of all
classifiers and was slowest in all calculations. Parameters that are mostly affecting its
computation time are the two factors

e number of used tangent vectors
e number of pixels

It has been shown at the end of section [3.2.2] that the calculations involve the inversion
of a matrix with row and column size equal to the number of tangent vectors. The
number of required calculations for the matrix inversion however increases more than
quadratically when increasing the matrix size. Another aspect is that each additional
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tangent vector needs to be produced two times in the resolution of the two images
that are compared. This is also a reason why the number of pixels per image largely
contributes to the processing time of the tangent distance.

In terms of memory usage the mean absolute difference metric also is much more
leaner than the tangent distance. The reason for that is that during the tangent distance
calculations not only the original two images need to be kept in memory but also all
tangent vectors and intermediate results for each image when solving for the scalar
parameters in equations [3.17}

In conclusion the computational burden of creating and searching in the image differ-
ence matrix can be considered to be too high when intending to use it in combination
with the tangent distance on a robotic system. For implementation on the Myon an
alternative algorithm was developed and is detailed in the following chapter.
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In the previous chapter the tangent distance based localization algorithm showed promis-
ing results for the online experiments. Its use on the robotic platform was therefore
considered. However for reasons that are detailed in the following section the exact
algorithm could not be just simply deployed without modification to the robot. Instead
an adapted algorithm was developed based on a heuristic approach. Its concept and
design is described in the following sections and thereafter evaluated and compared to
the previously presented algorithms.

5.1. Motivation and Reasons for another Algorithm

As described in the introduction chapter [1| an important reason for the development of
the OpenSeqSLAM using tangent distance was to enable the Myon, or other humanoid
robots, to localize themselves through image sequences. The results and evaluation of
the experiments, detailed in section make it evident that the OpenSeqSLAM-TD
requires considerable large amounts of memory and processing power during its compu-
tations. This however is problematic in the context of getting the algorithm to run on
typical humanoid robotic systems like the Myon where different tasks need to be per-
formed concurrently and such a demanding task could intolerable cripple overall system
performance. Especially when real-time performance and great reactiveness is desired.
As for many humanoid robots Myon’s current processing hardware can be categorized
as an embedded system. In general, that also brings some constraints regarding general
purpose processing power and working memory availability with it, at least when com-
pared to a modern desktop or laptop computer. So when designing an adapted algorithm
at least some characteristics of the underlying hardware should be considered which is
done in the following section In conclusion, it can be said an adapted algorithm is
needed because of the following arguments:

e need to cut processing time to get a real-time like answer
e need to reduce memory usage to fit embedded hardware capabilities

To achieve this, instead of the analytical, processing intense solution, a heuristic ap-
proach was developed that incorporates a greedy strategy to answer the localization
problem. There is evidence that heuristic approaches can work well solving real life
situations and day-to-day decision problems. In fact, one can argue that we humans use
heuristic behaviour on a daily basis like when guessing the general mood of a person
simply based only on facial expression or predicting the winner of a football match. Of
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course how well a heuristic strategy works depends on the complexity of the problem
and the available cues to make the heuristic decision. It can also go wrong e.g. when
choosing the supposedly fastest queue in the supermarket based on queue length.

In the field of artificial intelligence heuristic search algorithms are widely adopted for
example in the field of path planning. An overview is presented by Russell and Norvig in
[RN10L Chapter 3]. Heuristic based decision making has also been studied in other prob-
lem domains like psychology, finance and economy. Many different heuristic approaches
for those areas are presented at length for example by Gigerenzer and Gaissmaier in
[GG11]. Gigerenzer et al. also developed the Take The Best (TTB) heuristic, described
in [GG96]. This heuristic is in many ways similar to the heuristic developed for the on-
line algorithm described in this chapter. A number of the mentioned heuristic strategies
will be briefly characterised and summarized in section [5.3| and there also the general
concepts of the devised heuristic used in the online algorithm are presented.

In the next section the robotic hardware platform, used in context of the performed
experiments and for collecting data, will be described. This robot is called Myon. The
available hardware capabilities needed to be considered in the design of the online algo-
rithm because Myon was the intended target platform for testing the algorithm.

5.2. Myon

In this section a brief overview of the main characteristics of the robotic platform used for
experimentation and data collection is given. The robot is called Myon. Myon is a 1,25
meters high humanoid robot weighting about 15 kilograms. It is developed and used by
the members of the Neurorobotics Research Laboratory (NRL). The robot’s design and
functioning, that is only partly summarized here, is presented in greater detail by the
developers, Hild et al., for example in [HSBT12, Chapter 2] and [HSB™11]. To get a more
complete description of the robot more pictures and related research are also available
at the NRL website D One of the distinctive features of Myon is that it is composed of
different body part modules that can be attached in various ways to each other to act as
a combined unit, but each of them can also operate autonomously when separated. This
behaviour is possible because of processing capabilities and energy supplies contained in
each separable body part. Also locally in each module there is a neuronal network that
can control actuator behaviour independently of any central behaviour processing unit.
This way it is even possible to combine or detach modules during runtime. The separable
parts are two legs, one torso, two arms, two hands, and a head. In each body part there
are also different types of sensory data available, these include currently multiple three
dimensional accelerometer readings, motor position readings, angles, currents, voltages
and forces. This data of every connected body part is published in the robot’s body
by a data bus named SpinalCord. Updated sensory data is provided by the SpinalCord
every 10 ms. Some of the published sensory information bear the potential to be used
for improving the performance of place recognition. This aspect however is out of the
scope what can be fully evaluated in this contribution but is outlined in section

"http://www.neurorobotics.eu/robots/myon_en.php
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Image Sequence Recording on Myon

The main body part that was used in the context of this thesis is Myon’s head. The hard-
ware module integrated in it is called the BrainModule. This module includes a camera
that was used for recording the image sequences data for the experiments. The camera
model is a 21K15XDIG and single images are provided in a full color image resolution
of 346 pixels in width and 271 pixels in height. This camera is connected to a Field Pro-
grammable Gate Array (FPGA) board. A range of modules, instantiated on the FPGA,
handle the image data reading from the camera, audio processing and perform other
crucial tasks for example generating SpinalCord events. The precise details regarding
the functioning and features of the BrainModule are also elaborated by Hild et al. in
[HSBT12]. Camera image data updates are read out every 20 ms and pixel values are
saved into a pixel buffer. This pixel buffer can be seen as a memory bank on the FPGA
that is addressable like an array and can store a maximum of 512 pixel values. Of course
512 pixel values means, that the original camera resolution can not be fully buffered.
The mapping from the original resolution into the buffer is performed by transforming
each pixel coordinate of the original image into an address of the pixel buffer. To do this
first a two by two dimensional transformation matrix A is used. This matrix maps the
x and y coordinates of each pixel in the input image to a new coordinate pair =’ and 7/.
After a pixel coordinate pair is transformed by the transformation matrix A two offsets
b, and b, are added, so that the final coordinates are 2’ +b, and 3’ +b,. It is then checked
if the generated coordinate pair is within a range of two defined threshold values 4z
and Ymaz- These values can be understood as the dimensions of the image that will be
stored in the pixel buffer and because of the size of the pixel buffer they must be set to
values o that ZpazYmaezr < 512. Only if 0 < 2/ + by < Tpae and 0 < y' + by < Ymaq holds
the pixel value at pixel position  and y in the original image is saved in the pixel buffer
at position Zpez(y' + by) + (2' 4 by). For the recording of the image sequences different
resolutions were tested. In result the transformation matrix A was setup to scale down
the original input images to a resolution of 25 pixels in width and 20 pixels in height.
This offers the advantage that every part of the input image is mapped into the pixel
buffer for every new camera image update. In effect the full field of view of the camera is
preserved and this resolution still offers the possibility to recognize characteristic objects
in the scene as was demonstrated in the example images of section The above de-
scribed image buffering is performed in dedicated modules implemented on the FPGA.
In addition there is a general purpose soft processor unit instantiated on the FPGA.
This unit is a so called MicroBlaze microprocessor and is designed and provided by the
manufacturer Xilinz. More detailed information about this unit can be acquired from
the online Xilinr documentation H In general terms the MicroBlaze is used to control
the above described modules instantiated on the FPGA, handles events like SpinalCord
updates, triggers capturing of images, has access to the pixel buffer and can execute
arbitrary programs. For this contribution a program was written in C' and executed on
the MicroBlaze. It performed the recording of image sequences in the dream sequences

2http://www.xilinx.com/tools/microblaze.htm
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formats as described in the section This software relied on already provided libraries
and interfaces to configure the pixel buffer parameters, trigger the image capturing and
write the sequence data to a SD card. Most importantly this processor was the intended
target to test the implementation of the heuristic online localization algorithm on the
Myon. Although as of the time of writing a new version of the BrainModule is developed,
that uses completely different processors, for testing the heuristic algorithm on the Myon
the performance limits of the MicroBlaze had to be considered. The used MicroBlaze
had a memory capacity of 65456 Bytes, operated at a processing frequency of 72 MHz
and was instantiated without an additional Floating Point Unit (FPU). In addition to
the required system resources in terms of memory usage and processing time that could
be anticipated for the developed localization algorithm, memory usage and processing
capacity for the Myon libraries also needed to be considered. Also it was anticipated that
because of the involved tangent distance calculations floating point operations would be
involved. Hence when designing and implementing the contributed algorithm these con-
straints needed to be confronted. However as noted before the implementation of the
algorithm itself is independent of the hardware. The heuristic localization algorithms
will be presented in detail in the following sections.

5.3. Algorithm

The experiments performed in section [4.3.1] showed that the OpenSeqSLAM algorithm
using tangent distance recognition performance is in many cases superior to the mean
absolute distance variant of the algorithm. In the same context it was recognized that
the runtime behaviour regarding processing time and working memory requirements can
not be neglected especially when considering it in context of a robotic platform. In
the introduction of this chapter therefore the case was made for developing a different
algorithm using a heuristic approach. In this section it will be reasoned why a heuristic
might be a valid approach for the problem of image sequence based place recognition
and what kind of related heuristic approaches it draws its inspiration from. In addition
further assumptions about the execution of the algorithm will be made.

Heuristic algorithms are widely used in the field of artificial intelligence. Luger de-
scribes them in [Lug05, Chapter 4] by describing the heuristic idea in the context of
search. According to Luger a heuristic algorithm is designed in a way so that the search
for a solution is directed by a set of rules that aim to prefer at each search step a subset
of all possibilities in the search space that appear to be most promising to lead to a
desirable solution. Thereby it is possible to reduce the search space by only considering
candidates that are promising according to the heuristic rules. A prominent example of
heuristics in the field of artificial intelligence and robotics is the path planning problem,
meaning to search for a path with minimum cost between two locations represented by
nodes in a graph. Different heuristic strategies that are established for this problem
are for example presented by Russell and Norvig in [RN10, Chapter 3]. The path plan-
ning approaches presented by Russell and Norvig face all the common challenge that for
larger graphs the search space of possible paths can exceed what is feasible or desirable
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to compute, so heuristics are used to reduce or prioritize regions in the search space.
Heuristic path planning algorithms that not only prioritize but are actually reducing the
size of the search space on the basis of what possibilities look best at the current step
are also referred to as greedy algorithms. For those the following general attributes can
be summarized:

e result is not always optimal
e reduced computation time

e reduced memory usage

The last two of the listed points are desirable for the online place recognition algorithm.
The computation time and memory requirements are reduced simply because only a true
subset of all possibilities in the search space is considered. However at the same time it
is possible for some problems that a more optimal solution is overlooked by the heuristic
algorithm. This infers the necessity to evaluate how the heuristic algorithm performs in
terms of localization performance compared to the algorithm variants that do not reduce
the search space. That was done experimentally in section |5.4l

Another example, originally from the field of psychology is the so called Take the best
heuristic (TTB). As mentioned in the introduction of this chapter this heuristic was
introduced by Gigerenzer et al. and is described in [GG96]. The heuristic aims to help
deciding between alternatives. The decision is made on the basis of a set of cues. A
cue is an information that can be attributed to each alternative. The TTB makes the
decision based on a single cue that is most promising to make a correct decision in the
general case. In the context of image sequence recognition we can assume the cue to be
based on the image similarity metric. For example with the help of the tangent distance
for an input image we can select a set of most similar candidate images in the database
that can then be analyzed more closely. Since this approach eliminates a number of
possible candidates that are not considered any further it falls also in the category of
greedy algorithms.

Concepts and observations from the path planning problem heuristics and the heuris-
tics described by Gigerenzer can be transferred to the image sequence recognition prob-
lem that is of concern in this contribution.

Clearly the image sequence recognition problem can be described as a search problem.
For a given input image sequence a match in the database is searched for. The search
space consists of all possible database image sequences that can be compared to the
input image sequence. In case of the OpenSeqSLAM offline algorithms, evaluated and
described in the previous chapter, the search space is analyzed using the image difference
matrix data structure. This matrix completely maps the search space. It is kept in
memory and the OpenSeqSLAM algorithms traverse all parts of this structure at least
once in search for a match. The heuristic concept of reducing the search space was applied
in the design of the online algorithm. In effect the image difference matrix is not created
completely but a heuristic rule determines points of interest. The detailed functioning of
the algorithm is described in section but the heuristic concept involves performing
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a greedy step to reduce the search space. This step is very similar to the idea of the take
the best - leave the rest heuristic and can be summarized as follows. For the first input
image that is locally acquired the image similarity to all database images is calculated
and afterwards a set of candidate images that seem to be most promising in terms
of image similarity are determined. Afterwards exclusively the surrounding images of
these candidates are considered in further calculation steps of the algorithm. From that
it can be seen that the search space is reduced in a greedy manner, because solely the
supposedly best candidates in the first step are selected for further processing and the
rest of the search space is ignored.

Software Design and Implementation

In the introducing sections of this chapter the motivation for the heuristic algorithm
is laid out. Further in section [5.2] it was detailed on what kind of target system the
algorithm needs to run. But of course it should not be tailored to this platform alone.
From all aspects mentioned there a set of general software requirements can be distilled
that influence the software design in a major way. In summary the implementation
should have the following attributes:

e portable and flexible
e extendable

e maintainable

e efficient

e reactive

Especially the last two points are to a great extend influenced by the design of the
heuristic localization algorithm. The way this algorithm operates is detailed separately
in section However in general the implementation of the heuristic localization
algorithm is capsuled in a separate module and this section describes the way this module
is integrated with the other components. A full overview of all contributed modules and
how they interact with the underlying system is shown in figure [5.1

The heuristic algorithm is designed in a way so that it never needs to directly com-
municate with the underlying system hardware or system libraries for example to obtain
input data. In the figure the module containing the algorithm is shown in the upper
right part of the diagram as a rectangular box labeled Heuristic Online Localization.
All other modules are symbolised by a labeled rectangle each as well. Arrows between
boxes mark dependencies between modules. For example the heuristic algorithm mod-
ule depends on the linear algerbra, parameters and image provider module. A single
dashed line separates modules that were implemented in this contribution and modules
that where provided in case of the Myon system. The following descriptions explain the
functionality of each module and how they interact with other components. In addition
related software design decisions are explained:
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Heuristic Online Localization

Parameters |<—

P v

Image Provider —®{ Linear Algebra

Libraries

SD Card Camera Myon

Figure 5.1.: Module structure of the heuristic algorithm. The dashed line separates the

modules developed for this contribution and the used software and hardware
of the Myon. Arrows indicate dependencies between the modules.

Heuristic Algorithm As mentioned above this module contains the online algorithm. It

performs localization on the basis of local acquired input image sequences and a
stored image database. However there is no functionality that implements access
to the images themselves. Instead whenever the localization algorithm requires a
new local image or database image it demands access to these resources through
the interface of the Image Provider module. The idea behind this is to separate
the localization algorithm implementation from platform specific functionality. If
this was not done then for example the system calls to capture, load and store im-
ages would need to be integrated into the heuristic algorithm module and require
adaptation each time the platform interface changes. Also regarding the aspects
of maintainability and extendability the implemented separation is beneficial. An-
other module the Heuristic algorithm module depends on is the Linear Algebra
module. It is used to perform all involved matrix calculations for example when
calculating the tangent distance and various image convolution functions that are
needed for the tangent distance calculations. Another dependency of the Heuristic
Localization module is the Parameters module. The latter provides definitions of
constants and defines parameter values that have an influence on the algorithm.
For example the image database size and the number of used tangent vectors is
defined here.

Image Provider This module handles requests from the Heuristic Algorithm module.
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it can also be regarded as an abstraction layer that handles calls to the robotic
system libraries. In case of the Myon it conducts for example interactions with the
camera and the SD card memory through the provided system libraries. That is
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highlighted in figure by marked dependency to the Libraries module. In case
the robotic hardware changes, Image Provider is the only module that needs to
be modified when the interface of the Libraries module changes as well. These
adaptations can be tuned to the available hardware resources. For example it is
possible to implement the functionality in a way that all database images, requested
by the Heuristic Localization module, are kept in the working memory. This will
minimize the time needed to serve a request of the Heuristic Algorithm, but would
consume considerable large amounts of working memory. Larger image databases
might not fit completely. In these cases the Image provider can be implemented so
that it only loads parts, or even single images, of the database while other parts
that are currently unused are kept on a mass storage like the SD card. The Image
Provider depends also on definitions in the Parameters module.

Linear Algebra This module implements a collection of common matrix operations like,
addition, subtraction, multiplication, scaling, trace and matrix inversion. It also
offers a pixel based image difference. All operations were implemented with the
intent to minimize working memory usage. For example stack size was kept mini-
mal by reusing local variables and offering the possibility to interpret matrices as
transposed version by a flag instead of keeping a transposed version in memory.

Libraries and Myon Components To show how the developed modules interact with
the provided components of the robot, figure [5.1] also includes a Libraries module.
Its function is to offer an interface for using the hardware components of the
robot. Some of these components that are used by the implementation for Myon
are depicted also in the bottom part of the figure and include the SD-card and
camera.

Parameters This module holds definitions of parameters used by the Heuristic Algorithm
module and the Image Provider. For more details see also the descriptions given
before.

All of the described modules were implemented in ANSI C. In addition it was possible
to avoid the usage of C-library functions, so that the memory footprint of the software
components on the target system was further reduced.

5.3.1. Description of the Localization Algorithm

In this section it will be described in detail how the heuristic algorithm is designed
to work. Similar to the cases of OpenSeqSLAM and OpenSeqSLAM-TD the heuristic
algorithms main goal is to match a sequence of locally acquired images to a stored set
of database images so that the matched database image set is the most similar one to
the local images. In the best case the matched database and local images were taken
in the same location and so the localization is successful. In order to determine how
similar two images are the implemented heuristic algorithm makes use of the in previous
section described tangent distance metric.
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The algorithm can be divided into three main steps:

1. Take The Best Leave The Rest - greedy step (find £ many TD minima)
2. follow the trail step (and sum up)

3. return the minimum

Fach step is shown in more detail in pseudo code algorithm [I| and an example is
outlined in figure [5.2l The first step, referred to as greedy step, is shown from line
to line in the pseudo code. The general aim of this step is to find the k € N T
most similar images to the first local input image in the database. The algorithm will
then consider only these k database positions in the following steps. That is the reason
this step is called greedy step, because it behaves as described in [CLRS09, Chapter 16]
classical greedy algorithms do. They are characterised by taking only into account the
most promising sub-result and try to deduce an optimal solution from it.

The first step of the heuristic algorithm is exemplified in the upper part of the fig-
ure [5.2l There a box filled with the label L1 is shown. This shall represent the first
input image. Beneath that there is an array like structure, which represents the image
database. In the example we set £ = 3, meaning a maximum number of three different
positions in the image database will be searched for in the greedy step as the most promis-
ing locations. To determine these three locations first the similarity of every database
image to the input image L1 is determined using tangent distance. The results of this
step are represented in the figure by the second top row array that has greenly colored
entries. Each shade of green represents the result of the tangent distance calculation of
L1 and the corresponding database image at that index. More darker shades of green
shall indicate a low tangent distance result and therefore greater similarity, whereas
greater luminance indicates a larger tangent distance. In the same array three arrows
mark the three currently most promising database locations and for each array field the
tangent distance result value is given as a number below. So the database images at
indices 0, 4 and 8 are selected with their respective tangent distance values 6, 5 and
3. After the three most promising database images are selected the second stage of the
algorithm is performed by using the next input image, marked by the box labeled with
L2. In the second step, using tangent distance, L2 is now compared to three images that
are the direct successors of the images found in the greedy step. Each tangent distance
result is accumulated by adding it to the result of the previous step. So in the example
from left to right the new tangent distance values are 5, 4 and 6. Added to the values
of the previous step that gives an accumulated value of 11 for the first and 9 for the
other considered positions. The localization sequence length parameter in this example
is set to three. So in this case the second stage of the algorithm is only repeated once
and the final input image is labeled L3 as shown in the bottom part of the figure. Again
the tangent distance results are added to the accumulated values of the previous results.
The final scores for all three positions from left to right are 18, 12 and 16. Therefore
the finally returned minimum is the second sequence associated with the first database
image at index 4.
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Figure 5.2.: Example heuristic localization execution using three points of entry and a

localization sequence of length three.

In order to select these k images first the tangent distance for each database image

and the first input image is calculated. Then it is decided if this database image should
be included in the set of the k£ most promising images. However it is only included if all
of the following criteria are met:

1. the tangent distance does not exceed a fixed defined threshold value

2. if k previous images are already selected, it needs to be more similar to the local
image, than at least one image in the set
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3. the index of the newly found database image is not too close to a more similar
previous found image index

The third criteria is ensured by a guard window mechanism and its size is a config-
urable parameter of the algorithm. The motivation for using this guard window is to
avoid the collection of more than one of the k£ database images near the same tangent
distance minimum. This becomes more clear when looking at figure [5.3] There, the
image database is represented by an array like structure and each cell of this array is
colored in a shade of green to represent the tangent distance of the local image and the
database image at this position. A dark green represents a low tangent distance whereas
more light tones represent higher tangent distance values. Typically two similar images
will be marked with a dark green. For example array cell 4 appears to have a low tangent
distance in the figure. However, it can also be seen that the surrounding cells of a mini-
mum appear also in a darker tone. The reason for that is of course the spatial semantic
context between neighbouring image database entries. In the example that means that
cell images 2, 3, 5 and 6 will probably show only a slightly altered view of the same
location that is shown in the database image associated with cell 4 and therefore have a
lower tangent distance as well. Without the guard window it could happen that during
the first stage of the algorithm cell images 3, 4 and 5 are included in the k greedy set
but the database image associated with cell 11 is not. This is not desirable because we
want to keep k as small as possible to reduce the problem size but at the same time be
able to follow different separated positions in the image database that represent differ-
ent locations and not just slightly altered versions of the same place. In figure it is
also shown that the guard window is moved as long as the tangent distance values are
decreasing in the area covered by the guard window, so for example until it is placed at
array cell 4. When the algorithm leaves the guard window the previous found minimum
will be inserted into the greedy set. In the example this is position 4.

[

0 1 2 3 4 5 6 7 8 9 10 11

| guard window
I 1

Figure 5.3.: Greedy step of heuristic online algorithm in progress. The guard window is
intended to get a better spacial distribution of database elements that are
considered for further sequence comparison. Shades of green indicate image
similarity.

The second step of the algorithm is summed up in pseudo code from line [1§] to line
For each of the k positions found in step one we look at the immediately following
database image and calculate the tangent distance of it to the second localization image.
This tangent distance value is then added to the tangent distance value calculated in
step one and added to an accumulator. This process is repeated for all following local
images. So for each of the k positions the tangent distance values are accumulated.
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The third and last step of the algorithm looks for the minimal value of the k ac-
cumulated values and returns the original database position found in step one that is
associated with it.

It is of course possible that no position in the database resulted in a tangent distance
below the defined threshold value and in this case no database position can be returned.
This offers the possibility to indicate locations that are yet unknown to the robot or with
other words locations or perspectives that are not yet represented in the image database.

Experimental Implementation on Myon

In the previous sections of this chapter the design and workings of the heuristic online
algorithm have been described. There it has been stated that a main goal was to design
a heuristic algorithm that can be implemented and run on the Myon robot, described in
section[5.2] In order to demonstrate that the implemented algorithm can indeed work on
the Myon a small demonstration was created. The main procedure is that Myon’s head
is setup in a room. Then through the camera in Myon’s head three images of different
perspectives of that room are recorded and saved in the image database. Intended were
for example three images of different surrounding walls. After the image database is
filled with these three images the program enters an infinite loop. In that loop first a
current camera image is obtained and then secondly the heuristic online algorithm is
presented with that image as local input image. It should return the database image,
or to be more precise, its database index, that is recognized as being sufficiently similar
to the local input. If none is sufficiently similar that should be noted too. Then the
loop repeats itself. Tests with that setup showed that the algorithm works but a number
of glitches exist. For example when images are presented to the algorithm that are not
much similar to the images in the database, they are sometimes matched nonetheless and
often to a wrong index. This can happen when the head is turned from one perspective
represented by a database image to another, because in between the matching fails.
This problem might be reduced by adjusting the recognition threshold or waiting for
multiple loop circles to complete, until a recognition is confirmed. However, this could
damage responsiveness of the localization process. Admittedly this experiment could
not be much more simple in its approach considering the database only holds three
images and the input image sequence has a length one. Nevertheless, in addition to the
limited time frame of this thesis and constrained system resources, both not allowing
for more thorough tests of larger scale in this way, the described experiment was not
intended to build a detailed picture of the algorithm’s recognition performance. Instead
it was a proof of concept for the implementation and can be used as a basis for further
development, experiments and integration into the Myon system. Notwithstanding the
above the performance for larger scale image databases and input sequences at different
image resolutions and image transformatinos was analyzed for the heuristic approach
as it was done in the previous chapter for the OpenSeqSLAM offline algorithms. These
results and conclusions are presented in the following sections.
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Data: used variables

image database, I'mages

constant value recognition threshold, threshold

local image, initialized with first input image, [ < GetNextLocalImage()

minimal distance in guard window, minimum < threshold

greedy candidate list G < () , later filled with

tuple elements t(index, distscore)

Result: best matching index result in image database to local images OR -1 if
not recognized

1 foreach ¢ € Images do
2 distance <—TangentDistance (i, )
3 if inside guard window A distance < minimum then
4 minimum < distance
5 index < index of ¢ in I'mages
6 center guard window at index
7 end
8 else
9 if outside guard window then
10 | AddToGreedyList (¢(index, minimum))
11 end
12 if distance < threshold A(G not full V(distance < mazimal distscore in G)
then
13 minimum < distance
14 index < index of i in Images
15 end
16 end
17 end
18 foreach of fset € 1 .. localization sequence length - 1 do
19 l + GetNextLocalImage ()
20 foreach t(index, distscore) € G do
21 i < Images[index + of fset]
22 distance < TangentDistance (i,[)
23 update t(index, distscore) with t(indez, distscore + distance)
24 end
25 end
26 if |G| == 0 then
27 ‘ return -1;
28 end

29 t(minindex, minscore) = GetMinimalscoreTuple (G)
30 return minindex

Algorithm 1: Pseudocode of heuristic online algorithm. It returns the index
of the database image best matching the local input images or —1 in case no
recognition was possible.
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5.4. Experiments and Results

In this section experimental results for the heuristic online algorithm are presented. As
described in the previous sections of this chapter the developed heuristic online algo-
rithm makes use of the tangent distance to determine image similarity. Of course it
is well possible to use other image similarity metrics instead of the tangent distance
like the mean absolute difference. In the previous chapter the tangent distance variant
of the OpenSeqSLAM algorithm was compared to the OpenSeqSLAM algorithm using
mean absolute difference. This was done to evaluate potential benefits of the tangent
distance in connection with this localization method and so for similar reasons the fol-
lowing experiments not only include the tangent distance variant of the heuristic online
localization but also a mean absolute difference variant was created and tested.

To be comparable with the offline algorithm’s experimental results obtained in the
previous chapter the same experiments as described in section were performed for
the heuristic online algorithm using tangent distance and the heuristic online algorithm
using mean absolute distance. The results are described in the following section.

5.5. Results of Heuristic Online Algorithm Experiments

To make the results of the experiments more easily comparable to the experimental
results of the offline implementations presented in section [4.4] a similar form of presen-
tation as utilized there is used. For the same reason the offline implementation results
are included into the figures and tables presented hereafter. However the offline results
will not be described again in detail: They will only be compared to the results of the
heuristic online algorithms.

For the smallest tested image resolution, that are 8 pixels in width and 6 pixels in
height, the results are presented in figure It can be seen there that in general
the heuristic algorithms perform worse than the offline algorithms for this resolution.
However this is not unexpected and possible reasons for this are given in the following
section concluding the experiments. Further the tangent distance variance has a
lower precision than the mean absolute difference variant for a large part of the rotation
angle range.

Excerpts of the precision results are numerically presented in table It can be seen
again that precision for both heuristic algorithms drops significantly faster for increasing
degrees of rotation than it does for the offline OpenSeqSLAM variants. Similar obser-
vations can be made regarding the mean absolute error. This is sampled in table
Only for rotations larger than 25 degrees in both directions the mean absolute error of
the heuristics was smaller.

The second lowest resolution tested was 12 pixels in width and 10 pixels in height.
Results of the experiments are visualized in figure It can be seen that the precision
of the heuristic online algorithm using tangent distance was again slightly smaller for the
selected rotation range than the mean absolute difference heuristic. However, it can be
also observed that the difference in precision is smaller compared to the results obtained
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Table 5.1.: Excerpt of the precision results gained from the rotation experiment with
images of 8 pixels in width and 6 pixels in height. The interval entries mark
the rotation degrees range where the precision specified in the first column
is achieved.

Precision | OpenSeqSLAM-MAD | OpenSeqSLAM-TD | Heuristic-TD | Heuristic-MAD
= 1.00 [—6.0,6.5] [—5.0,6.5] [—2.0,2.5] [—3.0,3.0]
> 0.98 [—8.0,9.0] [—9.0,11.5] [—4.0,4.5] [—5.5,5.5]
>0.95 [—10.0,10.5] [—11.5,14.5] [—5.5,5.5] [—6.5,7.0]
>0.90 [—12.0,12.0] [—14.0,17.0] [—6.5,6.5] [—8.0,8.0]
>0.80 [—14.5,14.0] [—18.5,20.5] [—8.0,8.0] [—9.0,9.0]

Table 5.2.: Excerpts of mean absolute error results from the rotation experiment using

images with 8 pixels in width and 6 pixels in height.

Angle [°] | OpenSeqSLAM-MAD | OpenSeqSLAM-TD | Heuristic-TD | Heuristic-MAD
-30.0 205.28 157.39 147.16 119.00
-20.00 112.33 58.66 127.26 110.37
-10.00 6.96 4.45 49.10 22.11
10.00 3.10 1.22 41.54 12.41
20.00 121.15 36.79 130.76 110.89
30.00 210.86 128.65 164.90 141.58

for images with 8 pixels in width and 6 pixels in height and the same is true for the
mean absolute error.

Again numeric results are summarized in tabular form. Intervals of rotation degrees,
where certain precisions are achieved are listed in table Mean absolute error results
are listed in table[5.4] It can be seen from the numeric precision values that the rotation
invariance for both algorithms has slightly increased when compared to results of the
8 pixels in width and 6 pixels in height image results. However it should be noted
that these results only assess the rotation operation but as mentioned in the experiment
description three other transformations where tested. Transformations like for example
translation in horizontal direction show at this resolution quite different results and
the tangent distance seems to be more stable for those transformations. To make this
observation more clear, results for the horizontal translation transformation in the same
image resolution of 12 pixels in width and 10 pixels in height are presented in figure 5.6
It can be seen in this figure that for the complete horizontal translation argument range
the heuristic online algorithm using tangent distance has a greater precision than the
mean absolute difference variant and even outperforms for large translation ranges the
non-heuristic approaches. Without going into further details for this transformation
type the rest of the analysis will focus on the rotation invariance. The experiments for
the other transformation types are listed in the appendix

For the 18 pixels in width and 10 pixels in height images the results are presented in
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Table 5.3.: Excerpt of the precision results gained from the rotation experiment with
images of 12 pixels in width and 10 pixels in height. The interval entries
mark the rotation degrees range where the precision specified in the first
column is achieved.

Precision | OpenSeqSLAM-MAD | OpenSeqSLAM-TD | Heuristic-TD | Heuristic-MAD
= 1.00 [—6.5,7.0] [—8.0,7.5] [—3.0,3.0] [—3.5,4.0]
>0.98 [—8.0,9.5] [—12.5,13.5] [—5.0,5.0] [—6.0,6.0]
>0.95 [—10.0,10.5] [—14.0,16.5] [—6.5,6.5] [—7.0,7.0]
>0.90 [—12.0,12.0] [—16.5,18.0] [—7.5,7.5] [—8.0,8.0]
>0.80 [—14.5,14.0] [—19.0,20.0] [—9.0,9.0] [—9.0,9.5]

Table 5.4.: Excerpts of mean absolute error results from the rotation experiment using
images with 12 pixels in width and 10 pixels in height.

Angle [°] | OpenSeqSLAM-MAD | OpenSeqSLAM-TD | Heuristic-TD | Heuristic-MAD
-30.0 204.40 162.34 158.20 113.61
-20.00 116.79 51.48 125.62 103.33
-10.00 6.68 0.64 27.15 25.95
10.00 3.14 0.55 19.47 14.72
20.00 113.37 41.93 117.63 111.74
30.00 214.31 159.55 150.06 144.25

figure As it was the case for the lower image resolutions, these results indicate that
the heuristic approaches in total have a lower localization precision at this resolution
than the OpenSeqSLAM variants. In contrast to previous results, however, the heuristic
online algorithm using tangent distance overtakes the mean absolute error variant for
some rotation degrees.
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Figure 5.6.: Precision results for images with 12 pixels in width and 10 pixels in height
for the horizontal translation transformation type. The heuristic online al-
gorithm’s precision is greater than that of the mean absolute difference al-
gorithm.
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Figure 5.7.: Results of localization experiment using Nordland winter 18x16 images.

The numeric precision results listed in table show that the rotation invariance
has increased when compared to results of the lower image resolutions. All sampled
precision intervals are larger than for lower image resolutions in case of the heuristic
online algorithms using tangent distance. Also in case of the latter the mean absolute
error has decreased in a similar manner, that is shown by the values listed in table

Experimental results regarding the rotation transformation for images with 25 pixels
in width and 20 pixels in height are shown in figure It can be seen that for the all
tested rotation angles the heuristic algorithm using tangent distance achieved greater
precision. Also the mean absolute error of the tangent distance algorithm was smaller
for rotation angles not exceeding 13 degrees in either direction compared to the heuristic
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Table 5.5.: Excerpt of the precision results gained from the rotation experiment with
images of 18 pixels in width and 16 pixels in height. The interval entries
mark the rotation degrees range where the precision specified in the first

column is achieved.

Precision | OpenSeqSLAM-MAD | OpenSeqSLAM-TD | Heuristic-TD | Heuristic-MAD
= 1.00 [—6.0,6.5] [—9.0,7.5] [—3.0,3.5] [—3.5,3.5]
> 0.98 [—8.0,9.5] [—11.0,11.5] [—5.5,5.5] [—5.5,6.0]
>0.95 [—9.5,10.5] [—12.5,14.5] [—7.0,7.0] [—7.0,7.0]
>0.90 [—11.5,11.5] [—15.5,16.0] [—8.0,8.0] [—7.5,8.0]
>0.80 [—14.0,14.0] [—18.0,18.5] [—9.5,9.5] [—9.0,9.5]

Table 5.6.: Excerpts of mean absolute error results from the rotation experiment using
images with 18 pixels in width and 16 pixels in height.

Angle [°] | OpenSeqSLAM-MAD | OpenSeqSLAM-TD | Heuristic-TD | Heuristic-MAD
-30.0 199.49 188.94 151.79 115.77
-20.00 118.96 85.49 124.18 100.77
-10.00 8.52 0.31 23.59 23.76
10.00 4.17 1.69 14.77 14.09
20.00 116.22 67.10 119.84 112.36
30.00 214.91 181.95 152.83 148.91

online algorithm that used the mean absolute difference.

The numeric results highlighting the achieved precision in table show that the
rotation invariance of the heuristic online algorithm using tangent distance has again
increased compared to the lower image resolutions. For all listed precision values listed
in the table the heuristic online algorithm using tangent distance does outperform the
mean absolute difference variant. Also the precision of the heuristic online algorithm
using the mean absolute difference is slightly reduced compared to the lower image
resolution results. Similar observations can be made regarding the mean absolute error.
Some numeric examples of this are listed in table and it can be observed there that
for the rotation angles between -10 and 10 degrees the tangent distance variant of the
heuristic online algorithm has a lower mean absolute error compared to the lower image
resolution results.

Experiments with images at a resolution of 32 pixels in width and 16 pixels in height
proved to yield the best results for the heuristic online algorithm. This can be observed
in figure In case of the rotation transformation and combined with this image
resolution the precision of the heuristic online algorithm using tangent distance exceeded
the precision of the OpenSeqSLAM-MAD algorithm for rotation angles between -13
and 13 degrees. For the majority of tested rotation angles the mean absolute error
of the heuristic online algorithm was lower than the error of the OpenSeqSLAM-MAD
algorithm. The heuristic online algorithm using mean absolute difference remains nearly
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Figure 5.8.: Results of localization experiment using Nordland winter 25x20 images.

unchanged compared to the 25 pixels in width and 20 pixels in height resolution.

For images with 32 pixels in width and 16 pixels in height excerpts of the numeric
precision results can be found in table It can be seen that for the heuristic online
algorithm using tangent distance the rotation angle interval in which a precision of 1 is
achieved has doubled compared to the 25 pixels in width and 20 pixels in height reso-
lution. The other listed intervals for smaller precision values also increased. Table
lists samples of the mean absolute error. A significant feature of the listed values is
that in the rotation angle range of -10 to 10 degrees the heuristic online algorithm using
tangent distance has the smallest mean absolute error of all tested algorithms.
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Table 5.7.: Excerpt of the precision results gained from the rotation experiment with
images of 25 pixels in width and 20 pixels in height. The interval entries
mark the rotation degrees range where the precision specified in the first

column is achieved.

Precision | OpenSeqSLAM-MAD | OpenSeqSLAM-TD | Heuristic-TD | Heuristic-MAD
=1.00 [—6.0,6.5] [—9.0,7.0] [—3.5,4.0] [—3.0,3.5]
>0.98 [—8.0,9.0] [—10.0,10.5] [—6.0,6.5] [—5.5,6.0]
>0.95 [—9.5,10.0] [—11.5,13.0] [—7.5,7.5] [—6.5,7.0]
>0.90 [—11.5,11.5] [—14.5,15.0] [—8.5,9.0] [—7.5,8.0]
> 0.80 [—14.0,13.5] [—17.0,17.0] | [-10.0,10.0] [—9.0,9.0]

Table 5.8.: Excerpts of mean absolute error results from the rotation experiment using
images with 25 pixels in width and 20 pixels in height.

Angle [°]

OpenSeqSLAM-MAD

OpenSeqSLAM-TD

Heuristic-TD

Heuristic-MAD

-30.0
-20.00
-10.00

10.00

20.00

30.00

195.11
116.67
10.16
4.66
116.95
211.27

202.21
97.96
3.31
1.93
89.03
200.46

143.62
118.47
17.91
9.96
120.13
158.33

114.07
101.81
24.82
16.57
110.87
150.26
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Figure 5.9.: Results of localization experiment using Nordland winter images 32x16.
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Table 5.9.: Excerpt of the precision results gained from the rotation experiment with
images of 32 pixels in width and 16 pixels in height. The interval entries
mark the rotation degrees range where the precision specified in the first

column is achieved.

Precision | OpenSeqSLAM-MAD | OpenSeqSLAM-TD | Heuristic-TD | Heuristic-MAD
= 1.00 [—6.0,7.0] [—9.0,7.5] [—7.0,7.5] [—3.0,3.5]
> 0.98 [—8.0,9.5] [—10.5,11.5] [—9.5,10.5] [—5.5,6.0]
>0.95 [—9.5,10.0] [—12.5,13.5] | [-11.5,11.5] [—6.5,7.0]
> 0.90 [~11.5,11.5] [15.0,15.0] | [~12.5,12.5] [~7.5,8.0]
>0.80 [—14.0,13.5] [—17.0,17.0] | [-13.5,14.0] [—9.0,9.0]

Table 5.10.: Excerpts of mean absolute error results from the rotation experiment using
images with 32 pixels in width and 16 pixels in height.

Angle [°] | OpenSeqSLAM-MAD | OpenSeqSLAM-TD | Heuristic-TD | Heuristic-MAD
-30.0 199.51 207.34 135.38 113.45
-20.00 119.95 101.37 110.52 102.76
-10.00 10.11 0.44 0.44 24.03
10.00 4.40 1.17 0.35 16.63
20.00 118.52 87.76 91.68 113.91
30.00 213.00 202.15 148.63 147.75

The results of the experiments using the resolution of 64 pixels in width and 32 pixels
in height are presented in figure Like in the case of the OpenSeqSLAM algorithms
for this resolution the overall precision dropped slightly compared to the 32 pixels in
width and 16 pixels in height image results. Also the mean absolute error increased for
all tested algorithms.

Numeric excerpts can help to illustrate the difference to the other image resolution
results. These are listed in table [5.11] and table [5.12] The former lists again rotation
angle intervals in which at least a stated precision is achieved and the latter gives samples
of the mean absolute error at different rotation angles. Regarding the precision it can be
said that the rotation angle intervals of the algorithms in which the listed precision values
are not as wide compared to the results obtained at an image resolution of 32 pixels in
width and 16 pixels in height. The developed heuristic online algorithm maintained a
precision of 1 for a wider rotation angle interval than the OpenSeqSLAM-MAD and
the Heuristic-MAD algorithm. From the values in table it can be seen that it also
achieved around -10 degrees and 10 degrees the lowest mean absolute error of all tested
algorithms.
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Figure 5.10.: Results of localization experiment using Nordland winter 64x32 images.
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Table 5.11.: Excerpt of the precision results gained from the rotation experiment with
images of 64 pixels in width and 32 pixels in height. The interval entries
mark the rotation degrees range where the precision specified in the first

column is achieved.

Precision | OpenSeqSLAM-MAD | OpenSeqSLAM-TD | Heuristic-TD | Heuristic-MAD
=1.00 [—5.0,5.0] [—7.0,6.0] [—5.0,6.0] [—2.0,3.0]
>0.98 [—7.0,9.0] [—8.0,9.0] [—8.0,8.0] [—5.0,5.0]
>0.95 [—9.0,10.0] [—10.0,10.0] [—9.0,9.0] [—6.0,6.0]
> 0.90 [~11.0,11.0] [~12.0,12.0] | [~10.0,10.0] [7.0,7.0]
> 0.80 [—14.0,13.0] [—14.0,14.0] | [-11.0,11.0] [—8.0,8.0]

Table 5.12.: Excerpts of mean absolute error results from the rotation experiment using
images with 64 pixels in width and 32 pixels in height.

Angle [°]

OpenSeqSLAM-MAD

OpenSeqSLAM-TD

Heuristic-TD

Heuristic-MAD

-30.0
-20.00
-10.00

10.00

20.00

30.00

197.73
120.26
10.52
5.63
116.62
213.70

221.46
140.26
10.02
3.45
123.55
220.11

145.71
127.28
7.59
2.93
135.25
175.29

114.03
103.98
28.42
21.49
120.92
154.13

76




5.5. Results of Heuristic Online Algorithm Experiments

5.5.1. Conclusion and Result Evaluation

In the previous section results of the experiments performed with all implemented local-
ization algorithms are presented and compared. In this section a few general observations
about the characteristics of these results are carved out. Also some possible explanations
for these observations are attempted.

When looking at the results obtained at different image resolutions a general difference
in recognition performance between algorithms that use the mean absolute difference and
those that use the tangent distance can be observed. It appears that the algorithms using
tangent distance are more affected by a change in resolution than the mean absolute
difference algorithms. This can be observed by comparing the rate of change of the
precision values per algorithm at different image resolution experiments. One example
for this is the change in precision of the heuristic online algorithm between the 25 pixels
in width and 20 pixels in height resolution and the 32 pixels in width and 16 pixels in
height resolution when looking at the rotation transformation. In this case suddenly
the rotation angle interval in which a perfect precision is achieved doubles. A possible
explanation for this could be that the tangent distance only has a limited transformation
range at which it effectively operates. The reason for this is laid out in section
but an extreme example can be given to demonstrate this again. Lets say we have a
completely black image with one vertical, one pixel wide, white line in the middle going
from the upper image border down to the bottom. If we now only consider the tangent
vector for the horizontal translation operation. This is the horizontal image gradient
and as result we get two lines parallel to the original line, immediately left and right of
it marking the change in intensity. These two lines are also one pixel wide. If we want to
create an image using the tangent vector that is like the original image only horizontally
translated by 12 pixels to the left this cant really be done because the tangent vector
is zero at these columns and no information of the original white line is present there.
This is why, as described in the named tangent distance section, the Gaussian blur is
applied to the tangent vectors to reduce this problem. In effect the Gaussian blur acts
like an low pass filter on the image. This happens also when the image resolution is
reduced. In the experiments for all resolutions the same Gaussian blur was applied but
future experiments should consider testing a range of the performed Gaussian blur to
optimize according to the image resolution.

Another observation that was made is that especially for the 8 pixels in width and
6 pixels in height image resolution, recognition performance was poor for the heuristic
algorithm. A reason could be that the heuristic online algorithm relies to a great extend
on the first impression of the first input image, because only a few candidates are selected
according to this one. However once the details are reduced too far at such an image
resolution, too many candidates of database images become similar and it would be
better to rely more on image sequence information. However in the previous section
it became also evident that the best recognition performance is not achieved with the
highest tested image resolution that was 64 pixels in width and 32 pixels in height. Also
it depended on the transformation type and the tested algorithm.

Surprisingly for some of the tested image resolutions and transformation types the
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heuristic approach using tangent distance outperforms the OpenSeqSLAM-TD algorithm
so evidently sometimes less is more. In general the OpenSeqSLAM-TD achieved the best
recognition performance. To summarize the highlighted aspects:

e heuristic approach fails when image resolution drops too low
e image resolution influences TD algorithm results more than MAD results
e heuristic outperformed in some cases the non heuristic approach

e best overall precision for OpenSeqSLAM-TD

5.6. Using saved Sensory Data and Active Movements

In this section further possibilities will be briefly outlined on how the tangent distance
can be used in combination with sensory data and the abilities of the Myon or similar
humanoid robots to possibly improve the place recognition performance. However the
limited scope of this thesis did not allow to fully develop or experimentally evaluate the
presented ideas. So this section merely details the general ideas and possible advantages
that future research in this area might pick up on. In the previous section [4.1] it was
mentioned that the image sequences recorded on the Myon are enriched with sensory
data. This means that each single image of the image sequence is saved in combination
with data obtained for example from sensors like accelerometers or readings from the
robot’s motors. This data can be used to infer the orientation of the robot’s camera
at the moment the associated image was recorded. This is possible at least up to a
certain degree of precision depending on what type of sensor readings are available,
the measurement error of these sensors and other influencing factors that can not be
compensated when inferring the pose. However we assume for the following descriptions
and examples that the orientation of the robot’s camera can be sufficiently restored from
saved sensor values, so that for a used image resolution no perspective difference between
a pair of images, recorded assuming the real pose and the inferred pose, is noticeable.
Also we assume the orientation of the robot’s head to be defined by the three Euler
angles roll, pitch and yaw, around the axes of a coordinate system originating in the
middle of the robot’s camera. It was shown in section that when calculating the
tangent distance of two images A and B, intermediate results, calculated right before
applying the pixel based difference, are two sets of scalar values. Each of the scalar
values per set is associated with a tangent vector. The scalar’s magnitude indicates how
much of the associated tangent vector should be applied in the total sum of tangent
vectors that forms the approximated image. If we say the scalar values for the tangent
vectors of the image A are organized in the vector ax and similar, the scalar values of
the tangent vectors associated with image B are in dp, then each scalar in o4 indicates
how to transform A to get an image more similar to B and conversely the scalar values of
ap indicate how to transform the image B to get an image that is more similar to image
A. For example if we say A is a rotated version of B by 15 degrees in clockwise direction
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then it can be expected that the scalar value associated with the tangent vector of
the rotation operation is proportionally larger than the other scalar values. Fabrizio and
Dubuisson examine the tangent distance in a similar fashion in order to estimate relative
motion of objects depicted in different images. They describe this approach in [FDO07]
and successfully use the scalar values to determine the optical flow and the movement of
objects. Building upon the example given above so that A is a rotated version of B, we
can in addition say that A shall be a continuously updated live image that is obtained
from the robot’s camera and B is stored in the robots memory. This means the head is
rolled by 15 degrees in difference to the pose that would result in a situation where the
recorded image A equals B. By analyzing the resulting scalar values when calculating the
tangent distance of A and B it is now possible to induce a slight rolling head movement in
proportion to the scalar of the rotation tangent vector and in result this should decrease
the difference between the current pose of the head and the pose associated with image
B. If this behaviour is repeated in a control loop until the tangent vector scalar value of
rotation drops below a certain threshold, the final pose of the head can be expected to be
more close to the pose associated with image B. Also it can be expected that the tangent
distance between A and B is smaller in the final position than in was at the starting
position. A smaller tangent distance means of course greater similarity and recognition
of input images should become more reliable. The above given example uses the rotation
scalar value to adjust the roll of the robot’s head camera. It should be possible to apply
similar loops for the translations in vertical and horizontal direction by adjusting the
pitch and yaw of the head respectively. The above stated properties of the tangent
vector scalar values can be exploited for the use in the heuristic localization algorithm
at least in two ways, these will briefly described in the following. After performing
the greedy stage of the heuristic localization approach described in section of this
chapter, we have a set of k most promising candidate images identified in the database
sequence and these images. Also for each of these candidate images and the input image
the scalar values of the tangent distance is available. First it can be checked if a head
movement according to these scalar values would result in a head pose that is more close
to the pose that can be inferred from the saved sensory data of the candidate database
images. According to the results the recognition score of each candidate images can be
influenced, penalizing it if its not more similar. The second use is that the head can be
actively moved according to the scalar values in a looping manner as described above
and it can then be observed if the tangent distance decreases for the candidate images
and this also should be reflected in the recognition score of each candidate image. After
this refinement of the candidate image scores and before each following input image is
recorded, the pose that can be inferred from the sensory data of the database image
after the last candidate image can be assumed. This should result in a camera pose that
increases the similarity of each following recorded input image. However it necessary
to move the head in a separate pose for each candidate. The scheme is repeated until
the end of the localization sequence is reached and this concludes the basic outline of
possible uses for the tangent distance in combination with an image databased enriched
with sensory information.
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6. Conclusions

In the following sections, the findings and results of this thesis are concluded. Possible
related future work is summarized.

6.1. Future Work

The experiments show that the tangent distance can indeed have a positive influence
on the localization performance. The performed experiments however form only a lim-
ited set of possible test cases. While the performed tests analyze the four transformation
types rotation, horizontal translation, vertical translation and scaling, other image trans-
formation types should be included in future experiments to test if better transformation
invariance and place recognition performance can be achieved. An example of one trans-
formation is image shearing. Also experiments that include mixing of multiple image
transformation types applied on the input images should be carried out. For example
testing localization performance when rotation and scaling transformations are present
at the same time. In addition to the transformation types other input datasets could
be tested. These might include images with a greater variation in lighting conditions
or change in scenery. On the other hand images recorded in environments that offer a
small degree of variation in scenery should be tested. Good example images of the latter
kind can be obtained for example in indoor office environments with long corridors in
which humans would also struggle to recognize different places because walls, doors and
edges look all very similar. Since in case of the experiments performed for this contribu-
tion, recognition performance variations were observed depending on image resolution,
all future tests should be carried out with input image datasets differing in resolution
as well. Also it might be possible that the optimal image resolution depends largely on
the conditions or appearance of the environment in which the images are recorded.

Other parameters that can influence the performance of the algorithms using the
tangent distance similarity metric are:

e local sequence size

image database size
e Gauss convolution kernel size

e recognition threshold

different tangent vector types
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6.2. Conclusion

Moreover the heuristic algorithm should be tested with a number of item greedy
candidate set sizes at different image resolutions. Another future aim is to adapt the
integration of the heuristic online algorithm implementation into a concurrent processing
environment where different tasks are executed. For example on the Myon tasks like
audio processing or high level motion coordination tasks are running concurrently and
context switches appear between them. Therefore rather than blocking the system until
the complete localization algorithm has run through it would be desirable to offer a
function in the module that returns the current best candidate of a recognized location for
the current image input without any large processing overhead. This seems to be easily
possible to implement since the current best location candidate can be determined simply
by comparing the accumulated similarity scores of the candidate images collected during
or after the greedy step of the heuristic algorithm. To increase the performance of the
heuristic online localization algorithm the adaptive head or body movements according
to the saved sensory data and results of the tangent distance should be correlated.
Benefits and basic concepts of that are elaborated in section of the previous chapter.

To test new or modified localization algorithms it is probably a good thing to use
data from the target system. For example record image sequences directly on the Myon
as was done for this contribution. To load and view this data and select parts of it
for processing with these algorithms, the Dream Viewer application can be extended to
include these algorithms.

6.2. Conclusion

In this contribution new image sequence based place recognition approaches, based on
the OpenSeqSLAM localization algorithm, were developed and experimentally evalu-
ated. This has been done by incorporating the tangent distance image similarity metric
to achieve greater perspective invariance. A main goal was to test the localization algo-
rithm in an embedded human robotic system. To achieve this heuristic concepts were
used to develop an algorithm more adapt to the capabilities of such systems. The results
of the experiments showed that indeed the tangent distance did for many of the evalu-
ated cases of perspective changes improve the place recognition or localization process
performance. The OpenSeqSLAM algorithms were tested by using different data sets
recorded directly on the Myon robot and in addition larger image sequences were used,
obtained from openly licensed movies suitable for the purpose of testing. In addition a
multi platform application software called Dream Viewer was developed. This software
was designed to test image sequence based localization algorithms by enabling the user
to load various image sequences and select from these some arbitrary parts as inputs for
the localization algorithms. This software was used to test the implemented OpenSeqS-
LAM algorithm variants. It is designed so that it can be easily extended to include other
image sequence based localization algorithms as well. The developed heuristic algorithm
variants were tested comparably to the OpenSeqSLAM variants with offline image data.
In addition an implementation of the heuristic online algorithm using tangent distance
was implemented in a small experiment on the Myon. By that the general concept was
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6. Conclusions

verified and tested. From the obtained results and the evaluation it can be concluded,
that the tangent distance in case of the tested image transformations and image reso-
lutions was superior for notable circumstances especially for cases of medium or small
degrees of transformation. For the rotation transformation type, at an image resolution
of 32 pixels in width and 16 pixels in height, the heuristic online algorithm using tangent
distance achieved up to 8 percent higher precision than the OpenSeqSLAM-MAD algo-
rithm for rotation angles between -15 and 15 degrees. So this image resolution can be
recommended when using the heuristic algorithm. The OpenSeqSLAM-TD algorithm
had greatest of precision of all tested algorithms over the complete rotation angle range.
Further tests and investigations regarding the use of the tangent distance for image se-
quence based place recognition are therefore promising to achieve also desirable results.
For that purpose a modest basis is provided by this contribution.
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A. Komische Oper Image Sequences

(a) index 2 (b) index 3 (c) index 4

-

(d) index 5 (e) index 6 (f) index 7

(g) index 8 (h) index 9 (i) index 10

(j) index 11 (k) index 12 (1) index 13

) index 14 ) index 15 ) index 16

Figure A.1.: Database sequence images or Pose 1 sequence.
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(a) index 3 (b) index 4 (c) index 5

(d) index 6 (e) index 7 (f) index 8

(g) index 9 (h) index 10 (i) index 11

(j) index 12 (k) index 13 (1) index 14

(m) index 15 (n) index 16 (o) index 17

Figure A.2.: Pose 2 image sequence.



A. Komische Oper Image Sequences

(a) index 3 (b) index 4 (c) index 5

(d) index 6 (e) index 7 (f) index 8

(g) index 9 (h) index 10 (i) index 11

j) index 12 k) index 13 1) index 14
J

(m) index 15 (n) index 16 (o) index 17

Figure A.3.: Pose 3 image sequence.
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Figure B.1.: Experimental results mean absolute error for 8x6 images.
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Figure B.2.: Experimental results mean absolute error for 12x10 images.
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Figure B.3.: Experimental results mean absolute error for 18x16 images.
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Figure B.4.: Experimental results mean absolute error for 25x20 images.
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Figure B.5.: Experimental results mean absolute error for 32x16 images.
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Figure B.6.: Experimental results mean absolute error for 64x32 images.
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